这本书是由安纳德·拉贾拉曼和杰夫·乌尔曼多年来在斯坦福大学开设的一门为期一个季度的课程的教材演变而来。这门名为“网络挖掘”的课程CS345A原本是设计为高级研究生课程,但现在也对高年级本科生开放并且颇具吸引力。随着尤尔·莱斯科维奇加入斯坦福大学教职,我们对材料进行了大幅重新组织。他引入了一门新的课程CS224W,专注于网络分析,并且在CS345A中添加了新的内容,该课程已经更名为CS246。三位作者还推出了一门大规模数据挖掘项目课程CS341。本书现在包含了这三门课程中教授的内容。
大数据集挖掘.pdf
相关推荐
大数据集的挖掘——数据挖掘新视角
互联网和电子商务的普及带来了大量的数据集,这些数据成为数据挖掘的宝贵资源。本书侧重于解决数据挖掘中关键问题的实用算法,即使是处理最大数据集也能游刃有余。首先讨论了Map-Reduce框架,这是自动并行化算法的重要工具。作者详解了局部敏感哈希和流处理算法的技巧,用于处理数据量过大而无法进行详尽处理的情况。接着介绍了PageRank算法及其在组织网络信息中的应用技巧。其他章节涵盖了发现频繁项集和聚类的问题。最后几章分别讨论了推荐系统和网络广告的应用,这两者在电子商务中至关重要。本书由数据库和网络技术领域的两位权威专家撰写,无论对学生还是从业者都是必读之作。
算法与数据结构
16
2024-07-15
大数据集挖掘经典教材的探索与应用
《Mining of Massive Datasets》是一部经典的数据挖掘教材,深入探讨了如何处理和分析大规模数据集的技术与方法。该书内容清晰易懂,适合广泛读者群体。
数据挖掘
12
2024-07-18
海量数据集挖掘
一本阐述大数据经典理论和实践方法的专业书籍。
数据挖掘
21
2024-05-20
海量数据集挖掘
海量数据集挖掘
作者: Anand Rajaraman,Jeffrey D. Ullman
这本数据挖掘经典著作以清晰易懂的方式阐述了相关概念和技术。
数据挖掘
9
2024-05-25
大型数据集挖掘
该文章使用易于理解的语言介绍了大型数据集挖掘。
数据挖掘
14
2024-05-31
浙大数据集成讲解
数据集成与模式集成
数据集成是指将来自多个数据源的数据整合到一个统一的存储中,而模式集成则是整合不同数据源的元数据,为数据集成提供基础。
实体识别与数据冲突
实体识别是指匹配来自不同数据源的现实世界实体,例如将数据源A中的“cust-id”与数据源B中的“customer_no”匹配。
在数据集成过程中,需要检测并解决数据值的冲突。同一实体在不同数据源中的属性值可能存在差异,其原因可能是不同的数据表示方式或度量标准等。
Memcached
23
2024-05-12
数据挖掘测试数据集iris、libras、多特征数据集
数据挖掘是从海量数据中提取有价值知识的过程,结合统计学、计算机科学和人工智能等多个领域技术。测试数据集在验证和评估模型性能中起关键作用。以下是几个经典数据集的详细介绍:1. Iris数据集:由Ronald Fisher在1936年收集,包含150个样本,每个样本属于三种鸢尾花中的一种,有4个特征。2. Libras数据集:针对手语识别,包含39种动作,由34个人执行,记录了每个动作的39个关节位置信息。3. 多特征数据集:通常用于回归、分类等任务,具有多种属性和特征,来自不同领域如金融、医疗等。这些数据集广泛用于学术研究和教育,帮助理解和掌握数据挖掘的核心概念和技术。
数据挖掘
13
2024-07-16
2023MathorCup大数据挑战赛数据集的深度分析
《2023MathorCup大数据挑战赛:探索与分析》提供了一个宝贵的平台,让参赛者展示他们的数据分析和挖掘能力。本次比赛的数据集打包在名为“2023MathorCup大数据挑战赛数据集.rar”的压缩文件中,包含多个子文件,每个子文件都可能蕴含丰富的信息,等待参赛者发掘。大数据是指那些在传统数据处理工具难以捕获、管理和分析的海量、高速和多样化的信息资产,具有四个基本特征:大量、高速、多样和价值。数据集是数据科学的核心组成部分,包括用于训练模型或进行统计分析的具体数据,可以是结构化的(如表格形式)或非结构化的(如文本、图像或音频)。参赛者需深入研究数据结构和潜在关系,以提取有价值的信息。
数据挖掘
8
2024-07-17
大数据挖掘技术Minning of Massive Datasets.pdf
Minning of Massive Datasets.pdf是一本优秀的资料,涵盖了大规模数据挖掘及其应用mapreduce技术。
数据挖掘
13
2024-07-16