当前,机器学习和深度学习技术在特定领域得到广泛应用,尤其是MNIST手写数字识别。深度学习框架众多,各具特色,虽然工具只是辅助,却大幅简化了复杂的任务。通过matlab展示了一个基础的深度学习网络模型,不借助第三方库,逐步实现算法原理,深入理解每一步骤的实现过程。文章结合MNIST数据集,详细介绍了四层网络的设计,包括conv+relu+meanPool和conv。
matlab实现MNIST手写数字识别深度学习原理与实践
相关推荐
基于深度学习的手写数字识别研究
利用深度学习技术进行手写数字识别的研究,采用MATLAB实现并详细描述了相关代码。
Matlab
14
2024-09-30
手写数字识别使用MATLAB实现
使用机器学习方法实现的手写数字识别MATLAB源代码。
Matlab
11
2024-05-01
基于 GPLVM 降维和 SVM 的 MNIST 手写数字识别
为了提高 MNIST 手写数字识别的效率和准确率,提出了一种基于高斯过程潜变量模型 (GPLVM) 降维和支持向量机 (SVM) 分类的方法。该方法首先利用 GPLVM 对高维手写数字图像进行降维,然后使用 SVM 对降维后的数据进行分类。
分类方法
设计了两种分类方法:
方法一: 直接降维分类。对预处理后的原始数据使用 GPLVM 进行降维,然后通过 SVM 交叉验证进行分类,最后输出分类结果。
方法二: 阶梯跳跃降维分类。对预处理后的原始数据设定动态调整数据样本作为 GPLVM 降维算法的输入,通过 SVM 交叉验证分类后,对分类结果和当前维数进行保存。判断阶梯跳跃降维操作是否完毕,如果需
算法与数据结构
10
2024-07-01
实验结果分析:使用 PyTorch 实现手写数字 MNIST 识别的完整示例
在 MNIST 手写数字数据集上对提出的 PyTorch 手写数字识别模型进行实验评估。模型使用正确率、召回率和 F1-score 作为评价指标。
实验结果表明,该模型能够有效识别 MNIST 手写数字,并在各个指标上取得了优异的性能。
算法与数据结构
15
2024-05-16
Matlab实现手写数字图像识别
该项目使用Matlab实现了卷积神经网络(CNN)类的手写数字识别。Yann LeCun设计的CNN已广泛应用于手写数字识别、人脸检测和机器人导航等实际应用中。由于卷积网络的特性,该项目通过Matlab独立实现,不依赖神经网络工具箱的源代码修改。项目提供了预训练的CNN模型,并具备简单的GUI界面,可加载模型进行数字识别。
Matlab
9
2024-09-30
MATLAB实现手写数字的高效识别方法
利用MATLAB实现了手写数字的快速识别算法,该算法具有典型特征,适合作为课程设计的参考资料。
Matlab
14
2024-08-14
单层感知器神经网络MATLAB代码 - 手写数字识别比较使用MNIST数据库
介绍了单层感知器神经网络在MATLAB中的应用,用于手写数字识别,并与卷积神经网络进行了比较。随着技术进步,神经网络在处理大型数据集上发挥了重要作用。使用了MNIST数据库,这是一个包含42000个手写数字图像的标签数据集。通过比较不同神经网络拓扑结构(包括2层、多层CNN),评估了它们在手写检测任务上的性能。
Matlab
7
2024-09-01
手写数字模式识别训练与识别工具.zip
本工具利用MATLAB开发,训练和识别手写数字模式。软件包含训练及测试图片,使用本工具能够获得高准确率的识别结果。详细信息请参阅附加文档。
Matlab
15
2024-09-23
机器学习相关的简单实现LDA分类代码MATLAB - 人脸和手写数字识别
MATLAB中的LDA分类代码是机器学习中的一种简单实现方法,可用于人脸和手写数字的识别。
Matlab
9
2024-09-26