这是一个简单的脚本示例,演示了如何使用70%的数据集进行分类器训练,并用剩余数据集进行分类器测试。此脚本基于http://www.mathworks.com/matlabcentral/fileexchange/21204-matlab-weka-interface 。
使用Weka和Matlab数据集加载到内存中的训练和测试
相关推荐
使用Eka和MATLAB进行内存数据集的训练与测试
使用Eka和MATLAB进行内存数据集的训练与测试。
Matlab
13
2024-08-17
Matlab数据加载到Pandas
使用Python处理Matlab格式数据(.mat文件)时,可以使用scipy.io库中的loadmat函数轻松实现。
步骤:
导入库: from scipy.io import loadmat
加载数据: data_set = loadmat('data_set.mat')
将'data_set.mat'替换为您的.mat文件名。
loadmat函数将数据读取为字典类型,存储在data_set变量中。
访问数据: 字典的键值取决于.mat文件的结构。
通过查看字典的键值来了解数据的组织方式。
可以使用Pandas DataFrame处理加载的数据。
Matlab
20
2024-05-28
PyTorch FSRCNN 训练测试代码和预训练权重
PyTorch 平台上的深度学习模型,用于图像超分辨率:FSRCNN
包含网络模型、训练代码、测试代码、评估代码和预训练权重
评估代码可计算 RGB 和 YCrCb 空间下的 PSNR 和 SSIM
算法与数据结构
23
2024-05-26
MNIST手写数字数据集的下载和使用
MNIST(Modified National Institute of Standards and Technology)数据库是机器学习领域中的经典数据集,主要用于训练和测试手写数字识别算法。该数据集包含60,000个训练样本和10,000个测试样本,每个样本为28x28像素的灰度图像,代表数字0到9。MNIST数据集被广泛应用于验证和比较新的图像分类算法。为了下载MNIST数据集,您可以手动获取MNIST_data文件夹并将其保存在工作目录中。该文件夹包含'train'和'test'两个子文件夹,分别存储训练集和测试集数据。
算法与数据结构
13
2024-07-17
iris数据集在Matlab中的直接使用
irisdata.mat文件是一个常用的数据挖掘实验工具,特别适合于在Matlab环境下进行分析和应用。
Matlab
9
2024-10-01
优化新闻推荐算法训练数据集
新闻个性化推荐算法所需的训练数据集包括用户ID、新闻ID、浏览时间、新闻标题、详细内容和发布时间。
算法与数据结构
18
2024-09-13
WEKA数据集在Web数据挖掘实验中的应用PPT
WEKA处理的数据集通常为.arff格式的二维表,是进行Web数据挖掘实验的重要工具之一。
数据挖掘
14
2024-07-16
使用外部测试集进行批量处理模式Weka完整指南
批量处理模式(外部测试集)使用外部测试集J48显示,Datasources – ArffLoader×2,Evaluation – ClassAssigner×2,Evaluation – TrainingSetMaker,Evaluation – TestSetMaker,Classifiers – J48,Evaluation – ClassifierPerformanceEvaluator,Visualization – TextViewer,Visualization – GraphViewer。
数据挖掘
10
2024-07-21
在Matlab中搜索和查找数据集条目的功能datasetStrFind函数解析
函数ind=datasetStrFind(dset,str,vars),类似于strfind.m但适用于数据集而不是元胞数组。数据集类型在Matlab中类似数据库表,允许存储和操作数据。此函数允许用户在数据集dset的变量vars中搜索子字符串str。vars可以是变量名或列号。例如,给定数据集包含姓名和年龄,调用datasetStrFind(d1,'ri',1)将返回包含子字符串'ri'的条目。
Matlab
16
2024-07-19