这是一个简单的脚本示例,演示了如何使用70%的数据集进行分类器训练,并用剩余数据集进行分类器测试。此脚本基于http://www.mathworks.com/matlabcentral/fileexchange/21204-matlab-weka-interface 。
使用Weka和Matlab数据集加载到内存中的训练和测试
相关推荐
使用Eka和MATLAB进行内存数据集的训练与测试
使用Eka和MATLAB进行内存数据集的训练与测试。
Matlab
13
2024-08-17
Matlab数据加载到Pandas
使用Python处理Matlab格式数据(.mat文件)时,可以使用scipy.io库中的loadmat函数轻松实现。
步骤:
导入库: from scipy.io import loadmat
加载数据: data_set = loadmat('data_set.mat')
将'data_set.mat'替换为您的.mat文件名。
loadmat函数将数据读取为字典类型,存储在data_set变量中。
访问数据: 字典的键值取决于.mat文件的结构。
通过查看字典的键值来了解数据的组织方式。
可以使用Pandas DataFrame处理加载的数据。
Matlab
20
2024-05-28
SVM训练与测试数据集
SVM 训练和测试数据的压缩包挺实用的,适合用来验证你自己写的 SVM 代码有没有跑对。里面的数据结构也比较清晰,像testSet.txt这种文件,一般都是按行给出特征和标签,直接拿来喂模型就行。
支持向量机的原理说白了就是“拉条最宽的线”把两类数据分开。你写好算法后,用这套数据测一下精度,还挺有成就感的。如果你是用 Python 搞的,Scikit-Learn的接口顺手,svm.SVC或者svm.LinearSVC都能搞定。
训练和测试数据怎么分?train_test_split搞定一切。特征、标签分开,再切个 8:2 的比例就可以跑起来了。读取testSet.txt也不麻烦:
with o
算法与数据结构
0
2025-06-13
数据集划分策略训练集与测试集的合理配置
数据集的划分,说简单点就是“分配训练任务”,怎么分,分多少,都是门学问。训练集和测试集要搭配得当,模型才不会一味死记硬背。文章里除了讲原则,也带你用Python动手练练,像train_test_split这种函数,简单好用,建议多试试。搞推荐系统、分类模型,甚至做图像识别,第一步都是数据拆分。你要是随便分,测试出来的效果就会不靠谱,部署上线分分钟翻车。文章里有个不错的建议:按比例划分+打乱数据顺序,比较保险。文中还搭配了几个实战链接,像是用在SVM、ARIMA、FastText这种场景的,你可以直接点进去看看,里面不少数据集还挺干净的,拿来做实验刚刚好。实际操作那段也不复杂,用sklearn.
数据挖掘
0
2025-06-23
PyTorch FSRCNN 训练测试代码和预训练权重
PyTorch 平台上的深度学习模型,用于图像超分辨率:FSRCNN
包含网络模型、训练代码、测试代码、评估代码和预训练权重
评估代码可计算 RGB 和 YCrCb 空间下的 PSNR 和 SSIM
算法与数据结构
23
2024-05-26
MNIST手写数字数据集的下载和使用
MNIST(Modified National Institute of Standards and Technology)数据库是机器学习领域中的经典数据集,主要用于训练和测试手写数字识别算法。该数据集包含60,000个训练样本和10,000个测试样本,每个样本为28x28像素的灰度图像,代表数字0到9。MNIST数据集被广泛应用于验证和比较新的图像分类算法。为了下载MNIST数据集,您可以手动获取MNIST_data文件夹并将其保存在工作目录中。该文件夹包含'train'和'test'两个子文件夹,分别存储训练集和测试集数据。
算法与数据结构
13
2024-07-17
数据挖掘训练数据集
如果你在做数据挖掘或相关的机器学习项目,数据集是必不可少的工具。这里有一份蛮丰富的数据挖掘数据集资源,涵盖了各种场景,从经典的训练集到大数据集的挖掘,都是挺实用的。如果你需要用来训练模型,像是 SVM 训练数据集或者新闻推荐算法的优化数据集,完全可以直接拿来用。比如,Douban 推荐系统训练数据集就挺好用,能帮你大规模推荐系统的需求。如果你正在研究数据挖掘的应用,海量数据集挖掘这篇文章的资源也还不错,能你更好地理解如何海量数据。,针对不同的数据挖掘场景,这些数据集都能为你的项目强有力的支持。
数据挖掘
0
2025-07-01
WEKA数据集WEKA中文教程
WEKA 的.arff 数据集用起来其实蛮顺手的,尤其是你用 WEKA 做分类、聚类那类实验的时候,直接拿来就能跑,基本不用折腾太多格式转换。它的数据结构就是那种类似 Excel 的二维表,不过多了点@开头的标签信息,看着有点眼熟但又不太一样。
ARFF 格式的文件其实就是带结构的文本文件,上面是属性信息,下面是数据本体。你要自己写也不难,手撸几个字段就能跑。要是你懒得写,网上也有多现成的,比如 UCI 那些。
推荐你看看ARFF 数据集详细解读这篇,里面讲得比较细,还有格式示例,照着改就行了。
如果你想拿些练手数据跑跑模型,像20 个 Weka 机器学习数据集挺全的,分类、回归啥的都有,直接
Hadoop
0
2025-06-11
Weka数据集示例合集
Weka 的数据能力,配上结构化的 CSV 格式数据,简直是初学者练手、进阶者建模的好帮手。bank-data.csv是个蛮实用的案例,做客户分类、信用评分啥的都挺顺手;而elnino_gz.csv那类气候数据,对研究时间序列预测的同学来说,还挺有挑战性。Weka 的图形界面友好,点几下就能跑模型;你要是喜欢命令行,也能整得明明白白。文件格式也方便,.csv直接能拖进 Weka 里跑,.gz稍微解压一下就行,响应也快。想省事建模、快速试算法,Weka 绝对是个靠谱的选项。
数据挖掘
0
2025-06-30