- 模型拟合情况分为两种:
- 过拟合:模型在训练集上的表现过于理想,泛化能力较差。
- 拟合不足:模型在训练集上表现不佳,无法捕捉数据的规律。
- 理想模型应同时具有较低的训练误差和泛化误差。
模型过拟合和欠拟合
相关推荐
过拟合与欠拟合的概念与决策树的评估
过拟合:模型在训练集上的表现良好,但在新数据上表现不佳,泛化能力差。
欠拟合:模型未能从训练集中学习足够的信息,在新数据上表现不理想。
决策树的评估:使用交叉验证或划分数据集的方法来评估决策树的性能。
算法与数据结构
16
2024-05-20
决策树过拟合问题解析
过渡拟合问题的决策树算法,真的是一个老生常谈但又容易踩坑的点。算法的每个分支都在追求完美分类,听着挺牛的,但当训练数据本身有噪声或者样本太少时,就容易走极端——就是说的过拟合。树越长,不一定越聪明,反而容易被数据“骗”。你要是正好在搞数据挖掘或者在用决策树做分类预测,这篇内容可以帮你绕开一些常见陷阱。里面还贴了几个链接,像是讲过拟合与欠拟合的关系,还有训练集和测试集的划分方法,挺系统的。建议你在用像ID3、C4.5这种经典算法时,别光想着追高准确率,适当剪枝,或者换成像随机森林这种组合方法,抗噪性会更强。如果你现在正被训练效果困住了,不妨看看数据挖掘决策树这篇文章,或是过拟合与欠拟合的详细,能
数据挖掘
0
2025-06-25
数据拟合的模型、方法和理论梳理
讨论了数据拟合的基本原理,整理了多种相关拟合方法,从数学理论角度深入探讨
算法与数据结构
16
2024-07-30
数据插值和拟合技术详解
数据插值和拟合技术在这份优秀的教程中得到了详尽的阐述,如果您觉得有帮助,请考虑点赞。
Matlab
10
2024-07-18
MATLAB绘图随机IF模型拟合代码演示
在MATLAB中使用拟合代码IF_toolbox,详细介绍了如何拟合具有峰值触发电流eta和移动阈值gamma的随机IF模型。文章揭示了三种皮质神经元类型的提取和分类过程,并比较了它们的不同适应机制。此外,作者Skander Mensi、Richard Naud等人在神经生理学杂志2011年的研究中使用了类似的方法,通过fit_IF()脚本演示了模型的实施过程。拟合过程验证该方法在参数估计上的性能。
Matlab
12
2024-09-22
BP神经网络分类与拟合模型
非线性问题搞不定?那你得看看这个经典的BP 神经网络了。它就是那种虽然老,但还挺靠谱的模型,前馈结构加上反向传播算法,分类和拟合问题效果都还不错。结构上没啥花里胡哨的,输入层-隐藏层-输出层,中间那几层你可以根据任务随便堆叠几个。每个神经元接收上一层的输出,做个加权和,再激活一下——常见的ReLU、sigmoid都能用。它的核心其实就是反向传播算法。前面算一遍预测结果,后面再对照实际值把误差一层一层“倒着推”回去,调整每个连接的权重和偏置。虽然听起来有点麻烦,但用起来其实挺顺手的。举个例子,你要拿它做鸢尾花分类:4 个输入特征,输出 3 个种类,中间加个 10 个神经元的隐藏层。训练过程基本就
算法与数据结构
0
2025-06-29
最小二乘法Matlab模型拟合代码
最小二乘法的系统辨识代码,写得还蛮清爽的,用Matlab跑起来效率也不错。整个流程标准,从数据读取到模型拟合,基本一步到位,挺适合新手试水。
系统辨识用最小二乘的方式做,优势就在于简单直接,适合那种已知输入输出对、想快速搞个线性模型出来的场景。响应也快,代码也不啰嗦。
里面的结构其实不复杂,核心就在几行inv和矩阵乘法,懂点线性代数的你一看就明白。想深挖的,可以结合下SVM 仿真或者非线性最小二乘,配合用效果更好。
哦对了,多项式拟合那篇也不错,风格跟这套代码挺像的,可以顺手参考下。
如果你在搞OFDM、信道估计之类的通信类项目,也能套这套思路,相关的代码资源都整理得挺全的,别错过了。
建议你
Matlab
0
2025-07-01
非线性回归模型的拟合曲线Logistic曲线
非线性拟合的 Logistic 曲线,蛮适合拿来那种“S”型增长趋势的场景,像用户增长、药物反应这些都能用得上。用 MATLAB 来搞挺方便的,是配合fminspleas这种函数,拟合效果不错,收敛也快。
Logistic 模型本身就不算复杂,核心就是把那种逐渐趋于饱和的趋势用一个函数表达出来。你只要喂进去一些采样点,用最小二乘法一拟,拟出来的曲线贴合度还挺高的。
想系统了解的,推荐看看Logistic 回归那篇,讲得清楚,代码也直白;还有这篇使用 Fminspleas 进行 FMI 高效非线性回归拟合,对非线性优化做了比较细的拆解,适合搞深入点的同学。
用 MATLAB 跑起来的速度也挺快,
统计分析
0
2025-06-14
MATLAB数学建模:插值与拟合,解读拟合与统计回归
拟合与统计回归:区别与联系
拟合与统计回归,两者都涉及寻找一个函数来描述数据,但侧重点有所不同。拟合更关注函数对数据的逼近程度,力求找到一个函数,使函数曲线尽可能地接近数据点。统计回归则更关注数据背后变量间的关系,力求找到一个函数,解释自变量如何影响因变量。
统计回归
统计回归分析主要分为线性回归和非线性回归。
线性回归
线性回归假设自变量与因变量之间存在线性关系。在MATLAB中,可以使用regress命令进行线性回归分析。regress命令可以提供回归系数、置信区间等统计信息,帮助我们理解变量之间的关系。
非线性回归
当自变量与因变量之间关系复杂,无法用线性函数描述时,需要使用非线性回归。
Matlab
17
2024-05-20