本项目利用Spark推荐算法开发了一套电影推荐系统,后端采用了SpringBoot,前端则使用微信小程序进行展示。系统涵盖了数据处理、推荐算法、分布式计算、微服务架构和移动端开发等多个IT领域知识点。具体包括Spark的RDD和DataFrame API用于高效处理大规模用户行为数据,以及协同过滤、矩阵分解等经典推荐算法的应用。SpringBoot框架简化了后端开发,提供了高内聚低耦合的特性,而微信小程序则通过优秀的用户体验和轻量级特性增强了前端展示。
基于Spark推荐算法的电影推荐系统设计与实现
相关推荐
Spark实践:电影推荐
利用Spark大数据技术构建电影推荐系统,提供实际代码演示。
spark
18
2024-05-13
基于 Django 的图书推荐系统设计与实现
图书推荐系统
本系统基于 Python Django 框架构建,为用户提供个性化的图书推荐服务。
管理员功能
用户管理:删除用户
书籍管理:添加书籍、删除书籍
用户功能
用户认证:注册、登录
图书检索:查询书籍
交互评分:对书籍进行评分
购物车:添加书籍到购物车、删除购物车内的书籍
书单管理:创建书单、添加书籍到书单、删除书单
订单操作:生成订单
算法与数据结构
12
2024-07-01
基于Spark的电影推荐系统数据集
该数据集包含了推荐系统中常用的电影数据,可以用于基于Spark的电影推荐系统开发和研究。
spark
18
2024-04-30
电影推荐算法的MATLAB代码实现
介绍了一种基于协同过滤算法的电影推荐系统实现,使用MATLAB编程,采用余弦相似度进行用户间的影片喜好匹配。
Matlab
8
2024-08-18
基于 Spark 的推荐系统
使用内容标签 CBCF、协同过滤 UBCF 和协同过滤 IBCF 实现,已通过助教测试。
spark
15
2024-05-13
基于Spark电影推荐系统的SQL数据表优化
针对基于Spark的电影推荐系统,我们对SQL数据表进行了优化。
spark
14
2024-08-14
毕业设计基于Spark+Mlib的在线交友智能推荐系统设计与实现
在当前大数据时代,推荐系统已成为在线社交网络的重要组成部分,通过个性化内容和服务提升用户体验和粘性。探讨了如何利用Apache Spark和其机器学习库Mlib构建高效的在线交友智能推荐系统。详细介绍了系统的实现过程及关键技术:1. Spark作为核心进行数据处理、转换和模型训练;2. Mlib的协同过滤算法预测用户可能感兴趣的朋友;3. 数据预处理清洗和转化非结构化数据;4. 模型训练优化参数和推荐策略,提高准确性和多样性;5. 系统架构包括数据采集、存储、训练和推荐服务模块。
spark
10
2024-08-08
基于Java和Vue的SSM MySQL协同过滤算法电影推荐系统设计
这是一个关于数据库课程设计和毕业设计的文档,涉及使用Java和Vue构建的SSM架构以及MySQL数据库。
MySQL
6
2024-09-20
基于Spring Boot的WEB旅游推荐系统设计与实现
本数据库课程设计基于Spring Boot开发一个WEB旅游推荐系统,涵盖了数据库语句的实现与优化。设计目标是通过技术创新提升用户体验,支持旅游信息的有效管理与推荐。
MySQL
9
2024-07-18