数据挖掘的一个分支是处理不确定和概率数据的建模、查询和挖掘。
探索不确定数据挖掘技术
相关推荐
优化不确定数据集频繁模式挖掘的近似算法
为了提升在不确定数据集上频繁模式挖掘的效率,针对现有算法在判断是否需要创建子头表时计算量较大的问题,提出了近似挖掘策略AAT-Mine。该策略在损失少量频繁项集的基础上,显著提高了整体算法的挖掘效率。实验采用三个典型数据集对算法进行了测试,并与目前最优算法及典型算法进行了性能对比,结果表明AAT-Mine在时空效率上均有显著提升。
数据挖掘
19
2024-08-03
数据挖掘综述全面探索数据挖掘技术
数据挖掘综述:数据挖掘技术的广泛应用涵盖了从商业到科学研究的各个领域。随着数据量的增加和计算能力的提升,数据挖掘在发现模式和提供洞察方面发挥着关键作用。
Oracle
16
2024-07-27
不确定性空间数据挖掘算法模型的应用
不确定性空间数据挖掘算法模型在实际应用中展现出其独特的价值和效果。
数据挖掘
8
2024-07-13
Web数据挖掘技术探索
随着Web技术日臻成熟,基于此技术构建的应用程序正以惊人的速度渗透社会生活的各个方面,从教育科研机构间信息与服务的交流共享,到公司企业内分布式协同工作的管理,再到传统商务模式向电子商务的转型,这不可避免地导致人类交互信息电子化和海量化。
以Web服务器日志为例,一些热点日志数据每天增长量已达数十兆。从这些海量数据中挖掘发现有价值的知识,如模式、规则、可视化结构等,是数据挖掘与知识发现领域重要的研究和应用方向。
数据挖掘
12
2024-05-25
基于加权不确定图数据的高效紧密子图挖掘算法
研究不确定图数据中的紧密子图挖掘问题,利用加权不确定图模型,以子图期望密度和顶点期望度数度量紧密程度。算法基于贪心迭代,优化执行过程,保证结果达到2近似比,并且确保高效率和正确性。研究还证明了带顶点限制的紧密子图挖掘问题的NP难度,该算法相比其他方法更快速高效。
数据挖掘
15
2024-07-21
CRM数据挖掘技术应用探索
CRM数据挖掘技术应用探索,提供了清晰的英文原版教程,帮助理解CRM模型的核心概念。
数据挖掘
9
2024-08-15
SQL 2005 数据挖掘技术探索
从SQL 2005的基础通信开始,探索其通用API,并结合实例进行详细讲解。
数据挖掘
6
2024-09-22
最小支持度阈值设定数据挖掘技术及应用
设定最小支持度阈值,简单来说就是设置一个频繁项集出现的最小次数,只有达到这个阈值的项集才能参与到后续的中。这对提升挖掘效率有挺大。比如你可以设定一个支持度阈值,像例子里的 2,只保留出现 2 次以上的项集合,其他的就自动被过滤掉了。
数据挖掘中的支持度计算也挺,你可以通过设置一个较低的阈值来避免漏掉潜在的重要数据,同时又能确保计算的高效性。像在超大数据时,这种设定有用,你集中真正重要的信息。
关联规则挖掘中的最小支持度阈值是个核心概念,如果你设置得当,它能你精准地抓住频繁项集,进而发现那些有用的规则。就比如挖掘Apriori算法时,合理设置这个阈值,会大大减少不必要的计算。
如果你还没试过,建
Hadoop
0
2025-06-17
探索多维数据:数据挖掘技术应用
深入挖掘多维数据
在商业分析中,销售数据通常以多维形式呈现,例如销售额与产品、月份和地区的关联性。这种多维数据结构提供了对业务的全面洞察,可以通过数据挖掘技术进行深入分析。
维度示例:
产品
地理位置
时间
层级汇总路径:
行业 - 区域 - 国家 - 城市 - 办事处
年 - 季度 - 月 - 周 - 日
产品类别 - 产品
通过数据挖掘,我们可以探索这些多维数据的复杂关系,发现隐藏的模式和趋势,从而优化业务决策。
Hadoop
10
2024-05-12