主要功能是从EMG信号开始估计发作的多产。核心方法基于Profile Likelihood,它最大化数据的似然性,假设可能不同分布在可能起始点的左侧和右侧。该算法依赖于整数的斐波那契搜索算法以提高效率。choosedistr函数根据Kolmogorov-Smirnov、Lilliefors或Anderson-Darling检验,在近似的起始点内部估计并选择最佳分布集合,包括高斯、极值、拉普拉斯、柯西、逻辑、对数正态、威布尔、伽玛、Birnbaum-Saunders、指数、Burr等。当已知“真实”开始并作为参数提供时,choosedistrKSOracle函数选择最佳分布。
PROLIFIC-基于Fibonacci搜索的Profile LikelihoodEMG信号发作的最大化轮廓似然性
相关推荐
最大似然估计
估计理论导论及其在谱分析中的应用。这是一个包含实验数据验证的MATLAB程序。参考书籍:《数字谱分析》,作者弗朗西斯·卡斯塔尼耶编辑。
Matlab
12
2024-07-19
基于Matlab的数组信号参数最大似然估计问题分析
探讨了基于Matlab开发的数组信号参数最大似然估计问题。通过课程EEL6537的练习题和研究课题,详细分析了估计器误差与其CRB的比较,考虑了数据集x_l = β a_vec s_l + e_l的情况,其中a_vec是全1向量,β为待估计的复数标量,{s_l}为已知信号波形,e_l为iid误差向量。
Matlab
12
2024-07-31
基于循环平稳性最大化的盲解卷积
该算法利用信源的循环平稳性从噪声观测中估计循环平稳激发。
提供的Matlab函数:
MaxCycloBD.m:用于单输入单输出系统的例程。
MaxCycloBD_SIMO.m:用于单输入多输出系统的例程。
MaxCycloBDangle.m:用于时间/角度域中单输入单输出系统的例程。
demo_CYCBD.m:演示如何在不同的合成信号上使用CYCBD。
Demo_Fast_SC.m:展示了六个不同的应用程序函数,用于从观察到的噪声中提取循环平稳源信号并考虑不同的干扰。
readme.pdf:包含代码的一般信息。
参考文献:
[1] M. Buzzoni、J. Antoni 和 G. D'E
Matlab
17
2024-05-16
线性模型的最大似然估计
当残差服从均值为零的正态分布时,线性模型的响应变量y服从均值为β0+β1x的正态分布。
统计分析
14
2024-05-13
基于最大似然法的线性系统参数估计
使用最大似然法进行线性系统参数估计是一种常见的方法,同时还提供了可用于Matlab的相应程序。
Matlab
8
2024-08-30
EM算法期望最大化简介
不完全数据的最优解法,EM 算法算是蛮经典的一招了。期望最大化(Expectation-Maximization)听起来挺高深,其实本质就是一套“猜一猜、算一算,再猜一猜”的循环套路,适合你遇到缺失值、不完整样本的时候用,像在聚类、隐马尔可夫模型这类场景,效果还挺不错。
1977 年,Dempster、Laird 和 Rubin 提出来之后,学术圈对它的研究热情就没断过,各种变种和改进方法一茬接一茬。用得最多的地方?机器学习、模式识别、数据挖掘这几个领域跑不了,是你搞算法方向的,这玩意迟早得用上。
算法逻辑其实也不复杂,两个主要步骤:E 步先根据当前参数估计隐藏变量;M 步再根据这些估计值去优
数据挖掘
0
2025-06-29
GMSK最大似然序列检测Matlab实现
GMSK 调制的最大似然序列检测,用 Matlab 搞定其实没那么难。这套源码思路清晰,主函数就是main.m,其他函数都分好了,结构蛮规整的。你只要照步骤操作,放到 Matlab 2019b 里,点下运行,快就能看到仿真效果。
主打一个“适合小白”,代码基本不需要你改啥。就算有报错,看下提示改两行也就行了,实在搞不定还能直接联系博主。代码里有多细节是按项目标准写的,对新手来说,挺适合拿来练手或者参考的。
最大似然检测听着高深,其实就是在一堆的信号序列里找个最靠谱的。比如在通信接收时,判断哪段数据是最发出来的,准确率就靠它提升的。尤其在GMSK 调制里,跟 GSM 这类系统关系大,用得挺多的。
Matlab
0
2025-07-01
背包难题:价值最大化的动态规划策略
背包难题:价值最大化
面对一堆物品,每个都拥有独特的重量和价值,如何将它们塞进有限负重的背包,使其总价值最大化?这就是经典的“背包难题”。动态规划提供了一种巧妙的解决方案。
核心步骤
构建价值矩阵:创建一个二维数组(dp),其中dp[i][j]代表考虑前i个物品,在背包容量为j的限制下,所能获得的最大价值。初始状态下,dp[0][j]皆为0,因为没有任何物品可选。
逐个分析:对于每个物品i和可能的重量j,我们有两种选择:放入或不放入背包。
放入:若物品i的重量不超过j,则dp[i][j]为dp[i-1][j-weight[i]] + value[i],即前i-1个物品在剩余容量下的最
算法与数据结构
17
2024-04-30
优化SQL语句最大化利用COMMIT命令
在SQL编程中,频繁使用COMMIT命令会消耗系统资源,并且大事务可能会导致死锁。COMMIT释放的资源包括用于数据恢复的回滚段信息、程序语句获取的锁以及管理redo log buffer的空间。
Oracle
12
2024-08-12