通过分析概念层次树中的数据,发现隐藏的模式和知识。
概念层次树数据挖掘算法
相关推荐
概念层次树数据挖掘算法及其应用
基于概念层次树的数据挖掘算法广泛应用于大规模数据挖掘,通过对已有数值型数据概念提升算法的改进,提出新的算法。通过数据测试比较了新旧算法的性能,并提供了应用实例。
数据挖掘
9
2024-04-30
数据挖掘中的层次聚类算法
层次聚类算法是一种常用的数据挖掘技术,它通过将数据点逐步合并成越来越大的簇来构建层次结构。该算法不需要预先指定簇的数量,而是根据数据点之间的相似性逐步构建层次树状图。
数据挖掘
16
2024-05-12
数据挖掘决策树算法
决策树基本概念
一种树形结构,用于表示一个目标变量和一个或多个特征变量之间的关系。
节点代表特征,分支代表决策,叶节点代表分类结果。
决策树算法
一种分类和回归的监督学习算法。
通过递归分割数据,创建决策树。
常用的决策树算法包括 ID3、C4.5 和 CART。
决策树研究问题
预测:基于给定的特征,预测一个目标变量的值。
分类:将数据点分配到预定义的类别。
回归:预测连续变量的值。
主要参考文献
决策树的原理与应用
决策树算法的实现
数据挖掘
11
2024-04-30
数据挖掘中的决策树基础概念
决策树是一种用于分类问题的重要算法,通过学习目标函数f,将属性集合X映射到预定义的类标号y。分类任务的数据输入是一组记录,每条记录用元组(X, y)表示,其中X是属性集合,y是记录的类标号。决策树算法在数据挖掘中具有广泛的应用。
数据挖掘
10
2024-07-18
离散化与数值概念层次树概览
离散化的好处就是能把一大堆稠密的数值,变成几个好上手的区间。比如年龄这个属性,你可以把它分成“青年”“中年”“老年”几段,操作起来就方便多了。决策树那一套分类算法里,离散化可以说是个效率神器。是在训练数据量比较大的时候,速度快多了。
数据挖掘
0
2025-06-24
数据挖掘:概念、模型、方法、算法
概念:探索和分析数据,发现隐藏模式和关系。
模型:描述和预测数据行为的数学或统计框架。
方法:获取和准备数据的过程,以及应用挖掘算法。
算法:用于发现数据中模式和关系的数学过程。
数据挖掘
21
2024-05-13
数据挖掘:概念、模型与算法
作为清华大学出版社出版的经典教材,本书深入浅出地讲解了数据挖掘的核心概念、常用模型以及经典算法,适合不同阶段的数据挖掘学习者阅读。
算法与数据结构
18
2024-06-21
层次聚类算法: 数据挖掘技术与应用
层次聚类算法无须预先设置参数,但需终止条件。
聚合式 (AGNES) 和分裂式 (DIANA) 算法属于层次聚类算法。
Hadoop
21
2024-04-30
数据挖掘技术——决策树算法
描述数据挖掘中的一种方法——决策树算法,虽然内容为英文,但通过图示可清晰理解。
数据挖掘
10
2024-07-17