这是Neurocomputing 2020中介绍的MCIIF模型的Matlab源代码,通过视图间和视图内低秩融合实现多视图聚类。使用Matlab R2016a运行run.m来执行代码,其中mciif.m打包了我们的MCIIF模型。此外,我们还提供了code_coregspectral,这是作者发布的Coregularized多视图光谱聚类(NIPS 2011)软件包。代码通过详细的注释进行了解释,数据见“dts_bbc4view.mat”和“dts_WikipediaArticles.mat”。如果您觉得本代码对您有帮助,请引用:@article{liang2020robust, title={Robust multi-view clustering via inter-and-intra-view low rank fusion}, author={Liang, Yuchen and Pan, Yan and Lai, Hanjiang and Yin, Jian}, journal={Neurocomputing}, volume={385}, pages
使用Matlab实现稳健的多视图聚类 - MCIIF代码解析
相关推荐
稳健PCA的Matlab代码实现——fastRPCA
这份Matlab代码涵盖了鲁棒PCA和SPCP的多种变体,帮助研究人员快速实现相关算法。
Matlab
9
2024-09-14
使用MongoDB实现BOM表多视图转换
MongoDB是一种分布式文档数据库,广泛应用于处理和存储结构化与半结构化的数据。在企业级应用中,BOM(Bill of Materials)表格至关重要,详细记录了产品构成的各个组件及其层次关系。BOM转换是根据不同业务需求,将BOM数据在不同视图之间转换的过程。将深入探讨如何利用MongoDB和Java实现BOM表的多视图转换,包括设计合适的MongoDB集合和文档结构,以及使用MongoDB Java驱动程序执行数据读取、转换逻辑定义和性能优化的步骤。
MongoDB
9
2024-08-01
matlab代码多视图学习的数据融合技术
瓦希德·诺鲁兹(Vahid Noroozi),萨拉·巴哈迪尼(Sara Bahaadini),雷铮,谢思宏,邵伟祥,余飞飞, IEEE大数据,arXiv CCA通过多模态生成对抗学习提炼产品标题张建国,邹鹏程,赵立,姚瑶,刘烨,潘秀明,龚宇,余飞飞, NIPS研讨会,arXiv :甘民意调查具有多视图数据的特征选择:一项调查张R,聂芬芳,李力,魏伟-信息融合,2018 ()多视角学习调查常旭,陶大成,徐旭,arXiv:多视图表示学习研究李应明;杨明;张忠飞,1809年多视图数据分析的学习表示形式:模型和应用丁正明丁汉东赵云富光谱聚类单一检视稳健而高效的多路谱聚类, Anil Damle,Vic
Matlab
13
2024-07-31
使用Matlab进行K均值聚类的实现
Matlab实现的K均值聚类相对简单,适合初学者。
Matlab
14
2024-07-28
MATLAB代码实现闭环三视图重建
这是一个用MATLAB编写的软件包,专门用于神经回路在线闭环全光学询问。该软件由章子辉、劳埃德·罗素、奥利弗·高尔德和亚当·帕克在迈克尔·豪瑟实验室中开发。闭环界面(RTAOI)能够实时分析由Bruker Corporation的两光子显微镜采集的原始数据,并与Prairie View控制软件、自定义空间光调制器(SLM)控制软件(CL-Blink,基于Meadowlark Optics提供的Blink SDK)以及通过TCP/IP套接字进行通信的自定义感官刺激控制软件(StimPlayground_TCP)进行实时交互。用户可以选择感兴趣的区域(ROI)、指定实验协议并保存记录。该界面支持两
Matlab
9
2024-07-24
smote采样matlab代码-MV-LEAP基于多视图学习的数据增殖器
MV-LEAP基于多视图学习的数据增殖器,处理Olfa Graa创建的高度不平衡的类,以促进分类任务。详细信息请查阅。该框架已在2019年神经科学方法杂志上发表。MV-LEAP包括两个关键步骤:解决训练数据不平衡的问题,提出基于流形学习的增殖器;解决多视图数据异质性学习的问题,提出利用张量规范相关分析的多视图流形数据对齐方法,将原始和增殖视图映射到共享子空间中以对齐目标分类任务的分布。MV-LEAP源代码已在Matlab R存储库中发布,用于模拟异构多视图数据集的训练和测试。
Matlab
9
2024-08-26
多图像拼接Matlab实现代码下载
使用Matlab实现多图像拼接,包括SIFT特征提取、描述、匹配、RANSAC和仿射变换。这些技术帮助实现多幅图像无缝拼接,适用于各种视觉处理和计算机视觉应用。
Matlab
8
2024-08-26
使用Matlab代码优化K均值聚类算法
output.csv文件包含了586个模型的弹簧刚度数据。通过Matlab中的K均值聚类方法,可以从这些模型中提取出50个代表性的弹簧刚度。README.md文件中提供了如何调整算法以及三种不同的初始聚类质心选择方法的比较结果,分别为k-means++、样本随机选择和均匀随机选择。这些方法对于最终聚类结果的影响显著,但具体的性能差异尚不明确。
Matlab
19
2024-08-05
均值漂移聚类MATLAB代码与C++实现
均值漂移聚类算法在MATLAB和C++中均有实现。C++版本提供了类MeanShift,用于进行聚类。要使用该类,需要提供要使用的内核函数和内核带宽,然后调用cluster方法进行聚类。聚类结果将存储在一个向量中。
Matlab
9
2024-05-23