本算法采用改进的SMOTE算法对少数类数据进行过采样,使用聚类的欠采样方法删除冗余或噪音数据。通过对数据集的清洗和均衡,提高了少数类的分类精度,增强了支持向量机训练的效率。
基于混合重采样策略的非均衡数据集分类
相关推荐
ImSMOTE-RSTR改进SMOTE与粗糙集的混合重采样算法
非均衡数据的分类问题真不少,尤其做机器学习建模的时候,常常少数类都快被淹没了。ImSMOTE-RSTR*就是为了解这类烦人问题的利器。它一边用改进版的SMOTE生成少数类样本,一边靠粗糙集理论把训练集里的噪音数据给清理掉,得还挺干净。
算法流程也不复杂,先补样,再删冗余。适合数据不平衡又噪声多的情况,比如用户欺诈检测或医疗分类啥的,用完效果挺。你要是对 SMOTE 了解过,再加点粗糙集思想,感觉就像老菜加新料,味道更足。
代码方面嘛,思路清晰,逻辑简单,上手还算快。建议搭配 Matlab 或者 Python 实现,前者可以和一些已有的粗糙集工具联动,比如Rosetta。文末我放了几个资源链接,
数据挖掘
0
2025-06-17
图像重采样修改
关于Matlab编程的图像处理内容,提供对图像进行重采样的方法,以帮助广大用户。
Matlab
15
2024-07-31
resampleX - 重采样时间序列
resampleX 可重采样时间序列数据,以更改其采样率。它通过使用指定的重采样间隔 alpha 来执行此操作。例如,要将每秒采样 1000 次的数据转换为每秒 1100 次,请使用 alpha = 1000/1100。resampleX 与 MATLAB 的“resample”函数类似,但速度通常更快。
Matlab
17
2024-05-20
垃圾分类数据集
Gary Thung 和 Mindy Yang 收集的图像数据集,用于垃圾分类任务。有助于了解垃圾分类方法,指导普通民众科学处理垃圾,提高城市环境质量。
算法与数据结构
19
2024-05-01
Iris分类数据集
iris.csv 的分类数据,真的是机器学习入门选手绕不开的一份宝藏资源。数据结构清晰,三个类别,四个特征,CSV 格式直接拿来用,适合你练手分类模型。不管你用的是 Python 的scikit-learn,还是 Weka 这些可视化工具,都挺方便的。你要是想了解数据集背景,鸢尾花(Iris flower)本身也是个经典的案例。
我自己最早也是拿它来试了下逻辑回归,后来又用在神经网络上测试分类效果。说实话,数据量不大,跑得快,调参也不烦,反馈快,哪怕你代码写得不太优,也能快发现问题。像train_test_split分个训练集测试集,几行代码就能跑起来。
如果你用 Weka 的话,别错过这个I
spark
0
2025-06-16
基于数据挖掘的分类器数据集分类基础工具
分类器当前版本:0.1 开发版,基于数据挖掘概念的基础分类软件。此应用程序仅适用于完整的分类属性且无缺失值的数据集。目前版本可能含有一些错误,我会不断修复,敬请关注更新!
要求:- Python 3.3+:请从官网下载。- Numpy:请从官网下载。- PyQt4:请从官网下载。
使用方法:项目根目录包含示例文件 data.txt,您可使用它测试应用程序。Classifier v0.1 包括以下4个步骤:
步骤 1:选择一个.txt格式的数据集,它将用于构建决策树。建议检查 data.txt 文件以了解正确的格式。所有记录需按行排列,每条记录用逗号隔开,不包含括号或方括号。
步骤 2:
数据挖掘
19
2024-10-26
CensusIncomeData收入分类数据集
人口普查数据的收入预测,蛮适合想练手分类模型的朋友。CensusIncomeData数据干净,变量信息丰富,像年龄、教育、工作时间这些全都有,拿来训练个逻辑回归或者随机森林效果都挺不错。适合用来试水二分类任务,看看你的模型能不能识别出谁年入超 5 万。
数据来自 1994 年的人口普查库,Ronny Kohavi和Barry Becker帮忙筛过,基本不用太多清洗就能上手。哦对了,它也叫“成人收入数据集”,你在 Kaggle、UCI 上也能看到,算是机器学习界的老网红了。
训练目标简单:判断某人年收入是不是高于50K。输入特征包括职业、婚姻状态、教育背景等等,适合试试逻辑回归、随机森林、XGB
数据挖掘
0
2025-06-14
Matlab轮廓波变换重采样技术探讨
轮廓波变换在相关领域具有较新的应用,相关资源较为稀缺。
Matlab
15
2024-08-09
绵羊品种分类数据图像分类数据集
绵羊品种分类数据挺适合拿来练练图像分类模型的。数据包含来自澳大利亚四种绵羊品种的图像,分门别类,按照品种分组存储。图片已经对齐,可以直接用来训练。再加上 CC BY 4.0 的许可,商业项目用起来也没啥问题。你可以尝试把分类准确率拉到 95%以上,挑战蛮有趣的!,数据文件夹组织比较规整,训练起来还算省心。
统计分析
0
2025-06-14