这是物理机器学习俱乐部放置其研讨会资料的地方,我们将在2019年夏季创建一个新的研讨会。从7月30日至8月15日,每个周二和周四的上午10点到下午3点,我们将在Cupples I房间115预留空间。截至06/06,还有54天和49个未完成的示例。我们正努力从旧资料或网上资源中提取新的研讨会资料,以便及时完成每日一个笔记本的任务。许多人已自愿组织一个或多个工作坊,如果您也有兴趣,希望您参与进来!
PML_Workshops WashU物理机器学习俱乐部存储的Matlab分时代码
相关推荐
IST MATLAB代码存储库10天的机器学习之旅
IST的MATLAB代码机器学习存储库为期10天的学习资源。每天晚上7点左右更新,每段代码都附有详细解释,帮助您理解概念而非简单复制粘贴。建议使用笔记本和超参数调整,如有问题,请查阅相关博客或提交PR。
Matlab
5
2024-09-29
Matlab无法运行代码问题 - 自制机器学习国内机器学习
对于此存储库的Octave/MatLab版本,请检查项目。该存储库包含用Python实现的流行机器学习算法的示例,并在后面解释了数学原理。每种算法都有交互式的Jupyter Notebook演示,使您可以使用训练数据、算法配置并立即在浏览器中查看结果、图表和预测。在大多数情况下,解释是基于Andrew Ng的。这个仓库的目的不是为了实现机器使用第三方库“单行”,而是练从头开始执行这些算法和获得更好的每种算法背后的数学理解学习算法。这就是为什么所有算法实现都称为“自制”而不是用于生产的原因。
Matlab
18
2024-07-23
MATLAB分时代码地震损失评估
此页面是Kitayama S,Cilsalar H.(正在审核)提交的手稿的在线存储库:“通过ASCE / SEI 7-16程序设计的隔震和非隔震建筑物的比较地震损失评估。”存储库提供了地震损失评估MATLAB代码,包括更新的文件:“info_Comp_Fragility_NonStructural_Accel.m”,“info_Comp_Fragility_Structural”和“info_num_Components_Structural.m”。这些MATLAB代码基于条件频谱方法计算损失漏洞功能、预期年度损失(EAL)和随时间推移的预期损失(EL)。
Matlab
17
2024-08-09
机器学习课程代码汇编
吴恩达机器学习编程作业(MATLAB实现)
林轩田机器学习基石课程编程作业(MATLAB实现)
吴恩达机器学习编程作业:
作业一Q15-17
作业一Q18-20
作业二Q16-18
作业二Q19-20
林轩田机器学习基石课程编程作业:
作业三Q7-10
作业三Q13-15
作业三Q18-20
作业四Q13-20
Matlab
18
2024-05-31
Matlab集成C代码的机器学习资源指南
这篇文章列出了一些关于机器学习、数据科学和深度学习的顶级库、框架和工具,为初学者提供指南。虽然大多数资源集中在Python上,但也包含其他语言的工具。Apache Spark MLib是其中之一,适用于与Python和R的互操作。
Matlab
13
2024-08-28
MATLAB编程分时代码PWL区域分析
MATLAB分时代码PWL区域库包含了计算神经网络分段仿射表示的代码。该算法逐层处理网络,针对每个先前确定的区域解决超平面排列问题。虽然大多数深度学习库使用Python编写,但此代码仍然以MATLAB编写,因为MATLAB可以访问必要的几何计算。此工具还提供了用于Tensorflow模型转换脚本的方法。安装要求包括MATLAB和Python环境。
Matlab
10
2024-07-31
matlab分时代码项目-VehicleIntegrationRepoRC车辆集成库
matlab分时代码项目05.00.15版本转换存在关键问题。了解sdk-linux-am57xx-evm-04.03.00.05转换问题及其解决方案。联系李雄获取详细信息。
Matlab
9
2024-08-11
Coursera机器学习课程Matlab代码及曲线
此资源涵盖了斯坦福大学Andrew Ng在Coursera平台上教授的机器学习课程,需要约60小时的学习时间投入。课程通过实践教学介绍了机器学习的基础知识,包括线性回归、逻辑回归、神经网络和支持向量机等常见的有监督学习算法。此外,还涵盖了偏差和方差、L2正则化、误差指标以及学习/验证曲线等概念。课程还包括无监督学习算法如k均值聚类和降维技术。最后,课程介绍了推荐系统和大规模机器学习的相关内容。
Matlab
19
2024-08-18
MatLab分时代码BrainSignals的EDF与MatLab应用教程
该存储库包含基于欧洲数据格式(EDF)的脑信号教程,以及基于小波离散变换的MatLab应用。该教程起源于2011年,作者在睡意检测研究中编写,与学生分享从脑电图(EEG)收集信号的阅读和解释步骤。文档中讨论的信号数据可从指定位置获取,尽管文档使用葡萄牙语编写,暂无英语翻译。
Matlab
14
2024-08-31