IST的MATLAB代码机器学习存储库为期10天的学习资源。每天晚上7点左右更新,每段代码都附有详细解释,帮助您理解概念而非简单复制粘贴。建议使用笔记本和超参数调整,如有问题,请查阅相关博客或提交PR。
IST MATLAB代码存储库10天的机器学习之旅
相关推荐
Matlab无法运行代码问题 - 自制机器学习国内机器学习
对于此存储库的Octave/MatLab版本,请检查项目。该存储库包含用Python实现的流行机器学习算法的示例,并在后面解释了数学原理。每种算法都有交互式的Jupyter Notebook演示,使您可以使用训练数据、算法配置并立即在浏览器中查看结果、图表和预测。在大多数情况下,解释是基于Andrew Ng的。这个仓库的目的不是为了实现机器使用第三方库“单行”,而是练从头开始执行这些算法和获得更好的每种算法背后的数学理解学习算法。这就是为什么所有算法实现都称为“自制”而不是用于生产的原因。
Matlab
18
2024-07-23
机器学习代码库手写SVM算法的MATLAB实现
这个代码库收录了机器学习中常用的方法,包括手写SVM算法的MATLAB实现。该库将持续更新,用户可以从源代码中获取详细的用法信息。每个文件夹包含的主要工作如下:1. Gan:通过TensorFlow生成手写数字图像。2. Cnn:通过TensorFlow识别数字验证码,可用于解决验证码对自动爬虫的障碍。请注意,我使用网络上的Python代码作为训练/测试数据集来生成验证码。
Matlab
16
2024-07-29
Python机器学习50天学习指南(包含源码)
学习机器学习的全过程,覆盖数据预处理、简单线性回归、多元线性回归、逻辑回归、k近邻法、支持向量机、决策树、随机森林、K-均值聚类和层次聚类,详细的Python编程实例。
算法与数据结构
10
2024-07-17
机器学习课程代码汇编
吴恩达机器学习编程作业(MATLAB实现)
林轩田机器学习基石课程编程作业(MATLAB实现)
吴恩达机器学习编程作业:
作业一Q15-17
作业一Q18-20
作业二Q16-18
作业二Q19-20
林轩田机器学习基石课程编程作业:
作业三Q7-10
作业三Q13-15
作业三Q18-20
作业四Q13-20
Matlab
18
2024-05-31
Matlab集成C代码的机器学习资源指南
这篇文章列出了一些关于机器学习、数据科学和深度学习的顶级库、框架和工具,为初学者提供指南。虽然大多数资源集中在Python上,但也包含其他语言的工具。Apache Spark MLib是其中之一,适用于与Python和R的互操作。
Matlab
13
2024-08-28
Coursera机器学习课程Matlab代码及曲线
此资源涵盖了斯坦福大学Andrew Ng在Coursera平台上教授的机器学习课程,需要约60小时的学习时间投入。课程通过实践教学介绍了机器学习的基础知识,包括线性回归、逻辑回归、神经网络和支持向量机等常见的有监督学习算法。此外,还涵盖了偏差和方差、L2正则化、误差指标以及学习/验证曲线等概念。课程还包括无监督学习算法如k均值聚类和降维技术。最后,课程介绍了推荐系统和大规模机器学习的相关内容。
Matlab
19
2024-08-18
PML_Workshops WashU物理机器学习俱乐部存储的Matlab分时代码
这是物理机器学习俱乐部放置其研讨会资料的地方,我们将在2019年夏季创建一个新的研讨会。从7月30日至8月15日,每个周二和周四的上午10点到下午3点,我们将在Cupples I房间115预留空间。截至06/06,还有54天和49个未完成的示例。我们正努力从旧资料或网上资源中提取新的研讨会资料,以便及时完成每日一个笔记本的任务。许多人已自愿组织一个或多个工作坊,如果您也有兴趣,希望您参与进来!
Matlab
14
2024-07-31
Python实现机器学习算法终止matlab下列代码
机器学习算法Python实现目录一、1、代价函数其中:下面就是要求出theta,使代价最小,即代表我们拟合出来的方程距离真实值最近共有m条数据,其中代表我们要拟合出来的方程到真实值距离的平方,平方的原因是因为可能有负值,正负可能会抵消前面有系数2的原因是下面求梯度是对每个变量求偏导,2可以消去实现代码: #计算代价函数def computerCost(X,y,theta): m = len(y) J = 0 J = (np.transpose(Xtheta-y))(Xtheta-y)/(2m) #计算代价J return J注意这里的X是真实数据前加了一列1,因为有theta(0) 2、梯度下
Matlab
17
2024-07-16
matlab图像分割肿瘤代码的机器学习应用
这是一个优秀的开源数据科学存储库,专注于matlab图像分割肿瘤代码的学习和应用,解决实际世界中的问题。对于想要进入数据科学领域的新手来说,这是一个快速上手的起点。数据科学是当前计算机和互联网领域的热门话题之一,从收集数据到分析数据,再到提出建议和预测未来,这个过程需要深入研究和实践。网站提供了数百个数据科学问题的解答,以及专家们的见解和经验分享,是学习成为专业数据科学家的宝贵资源。Python语言及其丰富的库被广泛用于数据处理和应用开发,是进行数据科学项目的首选工具。
Matlab
9
2024-10-20