当前的聚类方法如K-means和DBSCAN采用全局参数,难以准确发现数据的自然聚类结构。新提出的分级聚类算法CluFNC通过调整网格大小、噪声阈值和神经节点数量,能够在数据空间中精确识别内部聚类特征。该算法首先根据参数划分数据空间网格,然后利用高斯影响函数计算每个单元的场强,接着运用SOM算法对网格位置和场强进行聚类,最后通过Chameleon算法对SOM聚类得到的神经网络节点权值进行最终的数据空间聚类映射。理论和实验结果表明,该算法能有效发现数据中的自然聚类特性。
研究论文-一种自然聚类发现的新算法.pdf
相关推荐
论文研究一种快速挖掘Top-K高效用模式算法
如果你在进行数据挖掘,是高效用模式挖掘方面的研究,会对 top-k 高效用模式挖掘算法感兴趣。最近有一种名为 TKHUP 的一阶段算法,它的主要优势就是减少了候选模式的产生,提升了算法的执行效率。通过四个有效策略,TKHUP 在时间和空间上都做了优化,尤其适用于需要挖掘高效用模式的场景。实验数据显示,TKHUP 在速度上比其他算法有优势。你可以在相关研究中看到更多这类高效算法的应用案例,蛮有意思的哦。
数据挖掘
0
2025-06-14
一种新型全局孤立点识别方法-基于层次聚类的创新研究.pdf
针对现有的孤立点检测算法在通用性、有效性、用户友好性及处理高维大数据集的性能还不完善,提出了一种快速有效的基于层次聚类的全局孤立点检测方法。该方法利用层次聚类结果,通过聚类树和距离矩阵可视化评估数据的孤立度,并确定孤立点数量。从聚类树顶层开始,无监督地去除孤立点。仿真实验验证了本方法能快速有效地识别全局孤立点,具备良好的用户友好性,适用于不同形状的数据集,特别适用于大型高维数据集的孤立点检测。
数据挖掘
14
2024-07-16
一种基于层次与划分聚类融合的改进文本聚类算法
高维稀疏相似矩阵的文本聚类方案,老实说还挺实用的。融合了层次聚类和划分聚类的思路,用一个阈值动态选聚类方式,这种设计挺巧,既省计算量,准确率也没掉太多。文本越来越多,尤其中文文本,普通聚类搞不好容易失焦。这个算法考虑了中文分词的特性,对中文聚类友好多。你要是常内容分类、自动标签这类场景,可以试试这个思路,改一改甚至能直接上生产。算法的机制是:先看相似度,如果小于设定阈值就新开一个簇,否则归到最近的那个里头。听起来简单,但跟传统聚类比起来,确实更灵活,适合那种主题跨度大的内容池。想深入挖的可以看看Chameleon 算法,也是主打层次聚类的,组合着用效果更稳。对了,还有一篇讲 K-medoids
数据挖掘
0
2025-06-17
一种高效挖掘最大频繁模式的新算法(2006年)
挖掘最大频繁模式是多种数据挖掘应用中的关键问题。提出一种新算法,利用前缀树压缩数据存储,并通过深度优先策略直接在前缀树上进行挖掘,避免了条件模式树的创建,大幅提升了挖掘效率。该算法调整节点信息和节点链,采用高效的策略处理数据集,以应对大规模数据挖掘的需求。
数据挖掘
15
2024-08-31
Jaya一种创新的优化算法
介绍了一种简单但强大的优化算法,适用于解决有约束和无约束的优化问题。所有基于进化和群体智能的算法都是概率算法,需要共同的控制参数,如种群规模、世代数、精英规模等。不同的算法除了共同的控制参数外,还需要特定的算法参数。例如,GA使用变异概率、交叉概率和选择算子;PSO使用惯性权重、社会和认知参数;ABC使用围观蜂数、雇佣蜂数、侦察蜂数和限制数;HS算法使用和声记忆考虑率、音调调整率和即兴次数。其他算法如ES、EP、DE、SFL、ACO、FF、CSO、AIA、GSA、BBO、FPA、ALO、IWO等也需要对各自的特定参数进行优化。算法特定参数的适当调整对算法性能非常关键,而不当的调整可能导致计算量
Matlab
10
2024-09-25
一种革新的量子遗传算法_张宗飞.pdf
量子遗传算法结合了量子计算和遗传算法的优点,特别适用于复杂多峰连续函数的优化问题。传统的量子遗传算法在这些问题上可能会陷入局部最优解或收敛速度较慢,为了克服这些问题,提出了一种改进型量子遗传算法(Novel Improved Quantum Genetic Algorithm,NIQGA)。该算法通过动态调整量子门的旋转角度θ,加速了收敛速度,并引入优体交叉策略以增强局部搜索能力。改进型量子遗传算法的优势在于能够有效提高全局寻优效率,避免陷入局部极值。文章首先介绍了量子遗传算法的基本机制,包括种群更新和染色体交叉,然后详细描述了改进型算法中的动态策略和优体交叉策略的应用。测试结果表明,该算法在
算法与数据结构
9
2024-09-14
论文研究一种基于关联分析的铝电解生产辅助控制方法
基于关联的铝电解生产辅助控制方法挺实用的,能够通过对生产数据的关联,领域专家获得有价值的知识。这些知识不仅能指导生产,还能推动相关研究的深入。通过引入双库协同机制,新的 KDD 过程模型能够让系统自主发现知识缺口并实时更新维护。现场实验也证明了该方法在实际操作中的有效性。简而言之,利用这种方法,电解铝生产的辅助控制就能变得更智能、更高效。
数据挖掘
0
2025-07-01
探索图论算法: 一种基于 Matlab 的方法
探索图论算法: 一种基于 Matlab 的方法
本资源深入研究图论算法领域,并提供基于 Matlab 的实践方法。内容涵盖经典算法(如最短路径、最小生成树)以及网络流和匹配等高级主题。通过实际示例和 Matlab 代码实现,帮助读者掌握将理论应用于实际问题。
Matlab
20
2024-05-23
论文研究一种基于规则模糊认知图的关联规则挖掘方法
关联规则挖掘一直是数据挖掘中比较热门的领域。你要是用过传统的 Apriori 算法,应该知道效率问题。在这篇论文中,提出了一种基于规则模糊认知图的关联规则挖掘方法,通过对每条规则进行可达模糊推理,大大减少了与数据库的交互次数。其实,如果你在做数据或推荐系统时,提升挖掘效率关键。而且,这种方法比传统的 Apriori 算法要智能化,效果还蛮不错,值得一试!实验证明,这种新思路可以提高效率并提升整体系统的智能水平。需要了解更多相关技术吗?这篇论文的附加资源里有多与关联规则挖掘相关的资料,比如Apriori 算法、模糊逻辑和Java实现示例,都是有用的参考。
数据挖掘
0
2025-06-24