日负荷预测精度的提升关键在于数据预处理,提出了基于联合数据挖掘技术的电力负荷优选组合预测方法。利用多种挖掘技术寻找具有高度相似气象特征的历史日负荷数据序列,进而构建优选组合预测模型,强化规律性并减少干扰。
基于数据挖掘技术的电力负荷优选组合预测方法(2005年)
相关推荐
电力负荷预测模式的数据挖掘研究
电力负荷预测模式的研究显示,数据挖掘技术已经成为评估电力企业管理现代化和科学化的重要标志。在过去的十年中,中国在电力负荷预测方面取得了显著进展。
数据挖掘
11
2024-08-14
基于数据挖掘的负荷预测模型2003
基于数据挖掘技术的负荷预测模型,思路比较老但还挺经典的。粗集+遗传算法负责筛选变量,交给神经网络搞预测,整套流程清晰又实用。想做电力负荷预测的可以参考下,尤其是想在特征选择上精细点的同学,值得看一看。
数据挖掘
0
2025-06-14
基于系统云灰色预测的数据挖掘方法研究(2004年)
探讨了系统云灰色预测模型的构建原理,并详细论证了其积分生成机制。进一步深入研究了解析预测公式的应用,特别结合数据库中“贫”信息和小样本序列数据的特征。通过实例分析,比较了解析预测与离散预测的效果,凸显了其简便、详尽和直观的优势。
数据挖掘
12
2024-07-31
LM-BP电力负荷预测模型
LM-BP 的预测程序挺轻巧的,适合刚入门或者快速搭建电力负荷预测模型的朋友。虽然作者没附带.mat数据文件,但代码本身还挺清晰,适合自己拿数据试试。BP 神经网络加上LM 算法,收敛速度比较快,在电力数据这种周期性强的场景下,表现还不错。嗯,要是你之前接触过trainlm,应该能快上手。
程序用的Matlab 神经网络工具箱,核心是经典的误差反向传播算法,训练速度挺快,响应也快。不过要注意,自己用的时候记得先准备好标准化的数据,免得训练结果发散。
你要是对其他变种感兴趣,可以看看比如Elman 神经网络或者遗传算法优化 BP那类,网上也有不少资源,我挑了几个靠谱的放下面了,懒得找的话直接点进
Access
0
2025-06-17
基于Elm神经网络的电力负荷预测模型MATLAB源码
介绍了基于Elm神经网络的电力负荷预测模型。首先,利用ELM(Extreme Learning Machine)算法构建神经网络模型,通过训练数据进行预测,进而实现电力负荷的预测。具体步骤包括:
数据准备:将历史电力负荷数据作为输入数据集。
数据预处理:对数据进行标准化处理,以提高模型的准确性。
构建ELM模型:采用单隐层前馈神经网络(SLFN),通过随机生成输入层权重,利用最小二乘法优化输出层权重。
模型训练:使用训练集进行模型训练,优化参数以提高预测精度。
预测与验证:通过测试集进行模型验证,评估其在实际应用中的效果。
该模型具有较好的泛化能力,能够有效提高电力负荷预测的准确性,具有较
Matlab
10
2024-11-05
聚类分析驱动的短期电力负荷智能预测
短期电力负荷预测精度对电网企业的运营管理和调度管理至关重要。 针对电力负荷受多种非线性因素影响, 难以获得高精度预测结果的问题, 提出一种基于聚类分析的短期负荷智能预测方法。 该方法首先利用k-means聚类技术对训练集气象数据进行聚类分析, 提取相似日及其相关历史数据, 然后构建支持向量机模型进行短期电力负荷预测。 算例结果表明, 该方法预测结果平均相对误差为0.88%, 优于同结构支持向量机预测 (1.66%) 和ARMA预测 (3.81%)。
数据挖掘
13
2024-05-23
MATLAB负荷预测基于人工神经网络(ANN)的预测方法
MATLAB负荷预测是一种基于人工神经网络(ANN)的先进预测技术。该方法利用MATLAB软件平台,通过分析历史数据和模式识别,实现对电力系统负荷未来趋势的精确预测。这种技术不仅提高了预测的准确性,还能帮助电力管理者优化资源分配和能源利用效率。
Matlab
8
2024-08-25
数据挖掘预测技术详解
深入探讨了数据挖掘中预测的定义、常用方法及其在实际应用中的重要性和效果。从传统的统计方法到现代的机器学习算法,每种方法都被详细分析和比较,以展示其在不同场景下的适用性和优劣。通过案例研究和实际项目经验,揭示了预测技术在业务决策和资源优化中的关键角色。
数据挖掘
12
2024-07-13
电力负荷预测综述及其重要性
电力负荷预测综述####一、绪论##### 1.1电力负荷预测研究意义电力负荷预测对电力系统规划和运营管理至关重要。它通过预测未来电力需求,为发电、输电和电能分配决策提供依据。精确的负荷预测可提高系统效率,确保电网稳定性和可靠性,优化资源利用,降低能源浪费和发电成本。此外,良好的预测也有助于推动电力系统的可持续发展,促进国民经济整体进步。 ##### 1.2国内外研究现状电力负荷预测在国内外历史悠久且不断取得新进展。国外已应用许多先进方法,而中国近年来也有显著进步,形成较为完整的预测体系。随着信息技术的快速发展,如人工智能、大数据分析等新技术的应用,电力负荷预测面临更多发展机遇。研究者正致力于
算法与数据结构
16
2024-08-23