Matlab多目标优化代码CPDEA版本所有权归刘一平所有。介绍了在进化多模态多目标优化中处理决策空间中收敛和多样性不平衡的问题。研究提出了不平衡距离最小化问题(IDMP)并使用收敛惩罚密度进化算法(CPDEA)。该算法平衡决策空间中的收敛性和多样性。发表于IEEE进化计算汇刊2020年,第24卷第3期,第551-565页。如有疑问,请联系。
Matlab多目标优化代码处理进化多模态多目标优化中的决策空间不平衡
相关推荐
多模态多目标PSO算法MATLAB开发简介
运行main.m来测试MO_Ring_PSO_SCD。您可以查阅论文'2。 CT Yu、BY Qu和JJ Liang*,“使用环形拓扑解决多模态多目标问题的多目标粒子群优化器”,IEEE进化计算汇刊。 (DOI:10.1109 / TEVC.2017.2754271),以获取有关此算法的更多说明。这篇论文也在“MO_Ring_PSO_SCD.zip”文件中。如果您有任何问题,请联系我(zzuyuecaitong@163.com)。
Matlab
6
2024-09-26
多目标进化优化方法综述(2017年)
详细探讨了多目标优化领域的关键内容,涵盖了NSGA2、NSGA3、MOEA等重要方法,介绍它们在解决多目标优化问题中的应用和优势。
Matlab
8
2024-09-26
NSGA-II多目标进化算法
多目标优化里头,NSGA-II 算法还挺经典的,属于进化算法中的老大哥级别。它是在老版 NSGA 的基础上做了不少优化,比如非支配排序快了不少,速度快,代码也不臃肿。精英策略的引入也让好个体不容易被淘汰,结果更稳,收敛也更快。
精英策略的引入挺关键,防止了“好苗子”在迭代中被随机干掉的尴尬。举个例子,如果你在做路径规划、多目标调度这类事儿,这点能帮你节省不少调参时间。
拥挤度比较这块也蛮有意思。以前的 NSGA 要手动设置共享半径,麻烦还容易出锅。NSGA-II 直接上密度排序,你不用再关心那些参数细节,个体分布也更均匀,结果看起来就舒服多了。
资源是打包好的NSGA-II.zip,里面代码结
算法与数据结构
0
2025-06-17
多目标进化算法的深入探究
运用反向学习模型的最新多目标进化算法,在优化问题领域取得突破性的进展。
算法与数据结构
17
2024-05-01
多目标进化算法开发资源集
本资源包含MOEA-dev-matser.zip全套代码,涵盖NAGAII、NSGAIII、MOEAD-DE、MOEA-DRA、MOEAD-M2M、SPEA2-SDE、GrEA、e-MOEA等多种进化算法,并附带中文注释。提供DTLZ、WFG、ZDT、UF、MOP、MOKP等多套数据集,经过验证可直接运行,生成多种评估指标如IGD值。
算法与数据结构
18
2024-07-13
Python组合赋权法多目标决策优化
组合赋权法在优化问题中挺常见的,是多目标决策时有用。你知道吗,Python 的灵活性和它强大的科学计算库像NumPy、Pandas都能帮你轻松实现这个方法。重点就在于如何为各个因素赋权重,这个权重决定了各个因素对最终结果的影响程度。像这样,weights = [0.3, 0.2, 0.4, 0.1],这个权重配置之后,你就可以开始加权数据,最终筛选出最佳解,效率蛮高的。如果权重是未知的,还可以通过机器学习来学习得到,像用Scikit-learn训练模型来优化权重分配。此外,组合赋权法也能与其他算法配合,比如遗传算法、粒子群优化等,让优化效果更好。,Python 为这种建模和优化问题了挺多强大的
算法与数据结构
0
2025-06-11
基于Matlab的多目标轴承在线跟踪优化
在Matlab开发中,通过粒子过滤器实现多目标轴承的在线跟踪。演示展示了粒子滤波技术在BO跟踪中的应用。
Matlab
18
2024-08-12
Hype Indicator Exact多目标优化算法(MATLAB)
Hype Indicator Exact 在 MATLAB 中是个挺有意思的算法,主要用来多目标优化问题。这个算法基于进化算法,通过一个精确的指标来引导进化过程,找到最佳的帕累托前沿解。嗯,它可以有效那些目标冲突的优化问题,像是你会遇到的资源分配、任务调度这类问题。主要是通过初始化种群、适应度评估、选择、交叉和变异操作,不断迭代,直到算法收敛到最优解。如果你是在 MATLAB 环境中做多目标优化,这个算法的实现方式挺简单,代码也比较直接,给你一个灵活的框架。你可以根据实际需求调整算法的各项参数,比如种群大小、交叉概率和变异概率,甚至利用 MATLAB 的并行计算加速整个过程。简单来说,Hype
Matlab
0
2025-06-14
多目标蚁狮优化算法的 MATLAB 实现
本资源包含针对多目标蚁狮优化算法 (MOALO) 的 MATLAB 代码实现,可用于解决具有多个目标函数的优化问题。代码经过全面测试,确保在 MATLAB 2019b 及更高版本中可以正常运行。代码结构清晰,易于理解和使用。
Matlab
19
2024-06-01