包含 K-Means 算法程序和所需数据集,解压缩后即可直接运行。请调整数据集文件路径以匹配本地位置。
K-Means 聚类程序
相关推荐
K-Means C语言聚类小程序
C 语言写的 K-Means 小程序,逻辑清晰,结构也不复杂,挺适合拿来练练手。你要是刚接触聚类算法,或者想看看底层是怎么跑的,这个小程序还挺值得一看。核心流程基本就几个步骤,注释也还算友好,不会太难上手。
K-Means 算法的核心其实就那几个点:随机初始化中心、计算距离、重新分配、再更新中心,循环直到稳定。这个小程序也就是围着这些逻辑来走的。虽然是用C 语言写的,但代码风格偏清爽,不是那种一坨难懂的风格。
实际用的话,可以自己改下输入数据,比如从文件读,或者直接内嵌数组。结构清晰,自己加点功能也不难。像加个可视化模块,或者做成命令行工具,其实都蛮好扩展的。
如果你想看看不同语言的实现对比,
数据挖掘
0
2025-06-14
详解k-means聚类算法
k-means聚类算法是一种常用的数据分析技术,特别是在大数据处理中具有显著优势。深入解析了k-means算法及其基于mapreduce的实现。
Hadoop
14
2024-09-14
K-means聚类算法实现
K-means 的聚类逻辑蛮清晰的,主要靠计算“谁离谁近”,把数据点分到最近的中心里。你要是手上有一堆样本,想看看有没有分组规律,用它还挺合适。孤立点也能得比较稳,结果还挺有参考价值。
K-means的实现过程不算复杂,核心就两个步骤:先随机选中心,不停更新,直到不再变。嗯,像在调频收音机,调到信号位置为止。要注意初始中心点选得不好,聚类效果就偏了。
如果你是用Python写的,可以直接撸个小脚本试试,比如下面这样:
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3)
kmeans.fit(data)
别的语言也有,
数据挖掘
0
2025-07-01
Python实现K-Means聚类算法
介绍了如何使用Python编写K-Means聚类算法的实现代码,适合学习和参考。
算法与数据结构
11
2024-07-13
详解K-means聚类算法.pdf
K-means聚类算法是一种基于分割的无监督学习方法,将数据集分成K个互不重叠的簇,以使每个簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。该算法简单高效,广泛应用于数据分析和挖掘领域。详细算法步骤包括随机初始化簇中心、将数据点分配到最近的簇、更新簇中心以及迭代优化过程。其原理在于通过迭代优化达到稳定的簇分布。K-means聚类算法简明易懂,执行效率高,因此在多个领域得到广泛应用。
算法与数据结构
16
2024-08-08
R语言K-means聚类算法
R 语言的 K-means 聚类算法,用起来真挺顺手的。语法简单,逻辑清晰,适合数据刚起步的你。kmeans()这个函数几乎一看就懂,配合像factoextra这样的可视化包,效果也直观。安装包推荐你先装好fpc和factoextra,再加上ggplot2一起用,调试聚类数量、看图都方便。聚类逻辑也不复杂:初始中心、计算距离、更新再分配,反复几轮,直到结果稳定。哦对了,记得标准化下数据,用scale()就行,能避免变量尺度影响结果。不然你聚类中心再准也白搭。还有,默认欧式距离,适合连续变量,分类变量得换思路。整个流程在 R 里实现起来蛮流畅的,适合信用卡用户、地理数据之类的多维数据。要是想对照
算法与数据结构
0
2025-07-05
Matlab实现K-means聚类算法
K-means聚类算法是一种常用的无监督学习方法,适用于数据分群和模式识别。在Matlab中实现K-means算法能够有效处理数据集,并生成聚类中心。通过迭代更新聚类中心和重新分配数据点,算法能够优化聚类结果。
Matlab
12
2024-08-22
K-Means聚类算法简要介绍
K-Means 是聚类算法中的最常用的一种,算法最大的特点是简单、易于理解,并且运算速度快。该算法适用于连续型数据,但有一个明显的限制——在聚类之前,用户必须手工指定要分成几类。也就是说,K-Means 算法要求我们预先设定聚类的数量,而无法自动确定这一数值。由于其高效性和简单性,K-Means 被广泛应用于各种实际场景,尤其是数据分析与机器学习领域。
Matlab
15
2024-11-05
K-means负荷数据曲线聚类
全年 365 条用电负荷曲线的 K-means 聚类,k_means111.m 这份代码写得还挺清爽的,尤其适合用来做电力数据类的聚类探索。你直接扔一堆负荷曲线进去,它就能帮你分成几个典型日——比如工作日、周末、节假日那种,挺实用的。
代码逻辑比较直白,基本上是先归一化,再跑一遍 K-means 算法。用的是 Matlab 的内置函数,像 kmeans() 这些都直接调,参数也写得比较清楚,新手看起来不会太吃力。
如果你之前没接触过类似的,可以先看看这篇基于 K-means 算法的负荷数据曲线聚类,讲得还蛮接地气。要是你偏好 Python,那推荐你翻下Python 实现 K-Means 聚类算
算法与数据结构
0
2025-06-25