综述了近年来关于基于数据挖掘的会计舞弊识别方面的文献,对比分析了不同数据挖掘技术和算法的分类器评价方法及其效果。研究结果为投资者、监管部门和审计师在舞弊识别中选择合适的数据和挖掘技术提供了参考。当前研究主要集中在反映舞弊三角综合数据的应用,表明比率数据在舞弊识别中的有效性优于账户数据。常见的算法包括统计检验、回归分析、神经网络、决策树、贝叶斯网络和堆栈变量法等。回归分析作为一种普遍应用的方法,而神经网络则在识别准确性方面表现突出。
基于数据挖掘的会计舞弊检测研究综述(2011年)
相关推荐
基于模糊粗糙集的企业财务报告舞弊检测研究(2011年)
企业财务报告舞弊检测方法的研究一直是财务管理领域的热点问题,目前的研究方法包括统计学、数据挖掘技术和模糊神经网络等。利用模糊粗糙集方法对财务指标进行约简并赋予权重,建立综合评价体系,进而构建企业财务报告舞弊检测模型,为解决财务报告舞弊问题提供新的思路。
数据挖掘
7
2024-07-20
基于人体能量模型的数据挖掘研究 (2011年)
利用数据挖掘技术,结合人体运动捕捉数据,探讨了基于能量模型的新算法。与传统几何位置相比,人体能量模型能够有效降低动作数据的复杂度,并准确反映原始动作特征。研究还通过相关系数分析不同关节之间的协同性,提取出低维度的动作索引。实验结果表明,该索引有效捕捉了动作的关键特征。结合支持向量机,该方法能够有效分类输入动作,为动作识别领域带来新的可能性。
数据挖掘
8
2024-07-27
我国白芨研究进展综述(2011年)
利用《中文科技期刊全文数据库》等检索工具,采用文献计量法,对我国1975~2008年学术刊物上发表的白芨研究文献进行统计分析。研究年发文量、合作度、合作率、期刊分布、研究单位等指标和内容,定量分析出我国白芨研究的主要人物、研究领域、研究单位及现状。明确了各年研究的重点、热点、核心人物和主要机构,对白芨的进一步研究和学科发展具有重要的指导作用。
统计分析
16
2024-07-15
基于数据挖掘的木马病毒检测技术研究
摘要:基于木马病毒行为特性,提出基于数据挖掘的相似度技术的主动木马病毒检测及预防算法。该算法从规则化、行为过滤及自学习三个方面确保了算法的完备性和有效性。首先,依据木马病毒特征码及行为特性,进行特征的规则化,建立起初的木马病毒规则库。其次,通过建立进程行为特征捕捉及分析过程,采用聚类分析方法完成行为特征的规则化。最后,利用规则库及相似度主动对比法,分析对比可疑进程,确定其性质。分析和实验结果显示,该算法具备自主学习和主动防御特性,有效平衡了静态测试技术和动态测试技术的优缺点。
数据挖掘
14
2024-10-22
Web数据挖掘的研究与应用综述
Web数据挖掘是当前数据挖掘领域的重要研究方向,文章首先分析了该领域的挑战,然后概述了几种Web数据挖掘的分类方法,最后探讨了Web2.0时代下的机遇与挑战。
数据挖掘
12
2024-08-22
民办高校体育研究综述及现状分析(2011年)
近30年来,国内民办高校体育研究通过文献资料法进行了详尽统计与分析。研究发现,民办高校的体育发展现状堪忧,具体表现在体育师资建设不合理,教学内容单一,教学方法陈旧,设施器材匮乏,课外活动不够活跃,业余训练被忽视。此外,对民办高校的体育研究较少,主要集中在教学与课外活动两方面。
统计分析
18
2024-07-24
基于乳腺X线图像的数据挖掘研究(2007年)
研究探讨了基于灰度空域统计特征和灰度共生矩阵的医学乳腺X线图像特征提取方法,以及这些特征在数据挖掘中基于神经网络和关联规则挖掘算法的应用。实验结果显示,这些特征在良性与恶性肿瘤分类中均表现出超过75%的准确率,证明了提出的特征提取方法在乳腺X线图像分类中的有效性。
数据挖掘
8
2024-07-23
教育数据挖掘研究进展综述
教育数据挖掘(Educational Data Mining,简称EDM)是计算机科学、教育学和统计学交叉领域的一门学科,专注于分析教育环境中独特的数据。其深入了解学生及其学习环境,以提升教育效果。通过对Web of Science及国内外文献的系统回顾,详细介绍了EDM的研究进展和工作流程。将数据挖掘技术在教育中的应用分为四大类,并通过统计分析典型案例,探讨了EDM的现状、不足及发展趋势。
数据挖掘
14
2024-07-15
数据仓库与数据挖掘研究综述
技术路线和实现方法
数据挖掘应用服务器管理平台
行业应用
阶段一- 模型创建可视化- 服务器调度和监听- 数据抽取工具研制- 用户界面友好
阶段二- 模型显示可视化- 模型组件的应用- 特定行业应用- 组件二次开发应用- 人机接口友好
数据仓库建模数据挖掘算法实现服务器框架构建
数据挖掘
19
2024-05-13