这段代码介绍了一种新的差分进化算法(IDE)和有限元法(FEM),用于优化桁架结构。该算法已成功应用于具有频率约束的桁架优化,并表现出快速的收敛速度和优质的解决方案。IDE简单而高效,可以轻松地应用于各种工程优化问题,只需调整代码中的目标函数和约束函数即可。有关更多IDE的详细信息,请参阅Ho-Huu V等人的论文:“使用基于自适应突变方案的改进差分进化算法优化具有频率约束的桁架结构”。
一种高效的桁架优化问题差分进化算法的快速实现
相关推荐
Matlab实现的差分进化算法可执行代码
这是一个可运行的Matlab实现的差分进化算法,代码中的注释非常清晰明了。
Matlab
13
2024-09-21
差分进化算法在Rastrigin函数上的应用
差分进化算法是一种用于解决优化问题的有效全局优化算法。该算法使用群组中的个体来表示解决方案,并通过变异、交叉和选择操作来生成新的解决方案。差分进化算法已成功应用于解决各种优化问题,包括Rastrigin函数。
Matlab
18
2024-05-31
Jaya一种创新的优化算法
介绍了一种简单但强大的优化算法,适用于解决有约束和无约束的优化问题。所有基于进化和群体智能的算法都是概率算法,需要共同的控制参数,如种群规模、世代数、精英规模等。不同的算法除了共同的控制参数外,还需要特定的算法参数。例如,GA使用变异概率、交叉概率和选择算子;PSO使用惯性权重、社会和认知参数;ABC使用围观蜂数、雇佣蜂数、侦察蜂数和限制数;HS算法使用和声记忆考虑率、音调调整率和即兴次数。其他算法如ES、EP、DE、SFL、ACO、FF、CSO、AIA、GSA、BBO、FPA、ALO、IWO等也需要对各自的特定参数进行优化。算法特定参数的适当调整对算法性能非常关键,而不当的调整可能导致计算量
Matlab
10
2024-09-25
差分进化改进灰狼优化算法matlab源码详细解析
一种新兴的优化算法是通过差分进化(DE)对灰狼优化(GWO)进行改良,形成了HGWO(DE-GWO)算法。以优化SVR参数为例,提供了详细的matlab源码,并附有中文注释,便于学习和自定义修改。
Matlab
13
2024-07-26
论文研究一种快速挖掘Top-K高效用模式算法
如果你在进行数据挖掘,是高效用模式挖掘方面的研究,会对 top-k 高效用模式挖掘算法感兴趣。最近有一种名为 TKHUP 的一阶段算法,它的主要优势就是减少了候选模式的产生,提升了算法的执行效率。通过四个有效策略,TKHUP 在时间和空间上都做了优化,尤其适用于需要挖掘高效用模式的场景。实验数据显示,TKHUP 在速度上比其他算法有优势。你可以在相关研究中看到更多这类高效算法的应用案例,蛮有意思的哦。
数据挖掘
0
2025-06-14
FP增长算法:一种高效的频繁项集挖掘技术
FP增长算法是一种用于发现频繁项集的数据挖掘技术,它摒弃了传统的“产生-测试”范式,而是利用一种名为FP树的紧凑数据结构来组织数据,并直接从FP树中提取频繁项集。
数据挖掘
12
2024-05-16
一种高效挖掘最大频繁模式的新算法(2006年)
挖掘最大频繁模式是多种数据挖掘应用中的关键问题。提出一种新算法,利用前缀树压缩数据存储,并通过深度优先策略直接在前缀树上进行挖掘,避免了条件模式树的创建,大幅提升了挖掘效率。该算法调整节点信息和节点链,采用高效的策略处理数据集,以应对大规模数据挖掘的需求。
数据挖掘
15
2024-08-31
数据挖掘技术一种高效的最大频繁模式挖掘算法
挖掘最大频繁模式是数据挖掘中的核心问题之一。提出了一种快速算法,利用前缀树压缩数据存储,通过优化节点信息和节点链,直接在前缀树上采用深度优先策略进行挖掘,避免了传统条件模式树的创建,显著提升了挖掘效率。
数据挖掘
13
2024-07-20
基于模糊熵和差分进化的多级图像阈值分割
算法概述
该程序实现了基于模糊熵和差分进化算法的多级图像阈值分割方法。该方法利用图像直方图的模糊划分,并通过差分进化算法优化模糊熵度量,以获得最佳的阈值分割结果。
算法来源
该算法基于以下论文:S.Sarkar, S.Paul, R.Burman, S.Das, S.S.Chaudhuri, “使用差分进化的基于模糊熵的多级图像阈值”,在第5届群体智能、进化计算和模因计算国际会议 (SEMCCO) 上发表,2014年。
使用方法
请参考代码注释和相关论文了解算法的具体使用方法。
Matlab
13
2024-04-30