FP增长算法是一种用于发现频繁项集的数据挖掘技术,它摒弃了传统的“产生-测试”范式,而是利用一种名为FP树的紧凑数据结构来组织数据,并直接从FP树中提取频繁项集。
FP增长算法:一种高效的频繁项集挖掘技术
相关推荐
一种创新的基于N-list的频繁项集挖掘算法
频繁项集的挖掘是数据挖掘中的核心问题之一,在多个关键数据挖掘任务中至关重要。引入了一种名为N-list的新型垂直数据表示形式,灵感源自于类似FP-tree的编码前缀树(PPC-tree)。N-list存储了频繁项集的关键信息,通过该数据结构,我们提出了一种高效的挖掘算法PrePost,能够有效地发现所有的频繁项集。PrePost算法的高效性源于几个关键因素:N-list的紧凑性,基于交集的项目支持计数转换,以及利用N-list的单路径属性直接发现频繁项集。我们在多种真实和合成数据集上对PrePost算法进行了实验评估,并与四种先进算法进行了比较,结果显示PrePost算法在大多数情况下表现最优
数据挖掘
16
2024-07-27
数据挖掘技术一种高效的最大频繁模式挖掘算法
挖掘最大频繁模式是数据挖掘中的核心问题之一。提出了一种快速算法,利用前缀树压缩数据存储,通过优化节点信息和节点链,直接在前缀树上采用深度优先策略进行挖掘,避免了传统条件模式树的创建,显著提升了挖掘效率。
数据挖掘
13
2024-07-20
FP-Growth频繁项集挖掘算法
频繁项集挖掘里,FP-Growth可以说是性价比挺高的一个算法。它不靠一遍遍地扫数据,而是搭了个叫FP 树的结构,把重要信息一次性存起来,省时又省空间。构建这棵树的时候也不复杂,先把项按频率排好,再按顺序塞进树里。最妙的是,每个频繁项都能拆出来建一棵小树,继续挖掘——这就叫条件 FP 树。嗯,递归,效率还真不错。有意思的是,Christian Borgelt写了个C 语言实现,性能蛮不错,还整了个叫FP-Bonsai的剪枝方法,能自动把没用的项砍掉,进一步加速。想拿它做点项目,比如超市购物,或者推荐系统啥的,用它来找出用户常买的商品组合,还蛮实用的。如果你想上手,可以看看他和别人的对比实验,和
数据挖掘
0
2025-06-22
一种高效挖掘最大频繁模式的新算法(2006年)
挖掘最大频繁模式是多种数据挖掘应用中的关键问题。提出一种新算法,利用前缀树压缩数据存储,并通过深度优先策略直接在前缀树上进行挖掘,避免了条件模式树的创建,大幅提升了挖掘效率。该算法调整节点信息和节点链,采用高效的策略处理数据集,以应对大规模数据挖掘的需求。
数据挖掘
15
2024-08-31
Apriori频繁项集挖掘算法
Apriori 算法在挖掘频繁项集和关联规则这块儿,算是老牌选手了,逻辑简单,思路清晰,最适合刚接触数据挖掘的你。规则一条条挖,速度还能接受,配合剪枝优化,用起来也挺顺手的。
交易数据的商品组合推荐、购物车这些场景,Apriori 都能搞定。比如你想知道“买牛奶的人会不会顺便买面包”,那这算法就派上用场了。可以配合 Java 写个小项目,跑起来还挺快。
文档我整理了几个链接,建议先看这个 Apriori 关联规则挖掘算法,基础讲得清楚。再瞄一眼Apriori 算法详解,讲得更深入。
你要是关心性能问题,推荐你看看这个高效剪枝的版本,思路蛮实用的。还有 Java 版的示例项目哦,点这里Java
数据挖掘
0
2025-06-25
基于有序FP-tree的最大频繁项集挖掘
基于有序FP-tree的最大频繁项集挖掘
概念提出: 完全前缀路径、有序FP-tree
有序FP-tree构建: 根据数据项所在层级建立
数据表示: 利用有序FP-tree表示数据
算法提出: MFIM算法,利用有序FP-tree中的完全前缀路径进行最大频繁项集挖掘
算法优化: 利用完全前缀路径对挖掘算法进行优化
实验结果: 对于浓密数据集中的长模式挖掘具有良好性能
数据挖掘
18
2024-05-25
Apriori算法Java频繁项集挖掘
Apriori 算法的 Java 源码,写得挺清楚,逻辑也比较易懂。适合你拿来跑个 demo 或者改成自己的逻辑直接上项目。源码里用的是频繁项集的经典思路,多次扫描数据,算支持度,再生成关联规则。没有堆一堆公式,反倒更容易入门。
Apriori 算法是搞关联绕不开的东西,像电商里的“买了 A 也买 B”,就是这类场景。代码结构比较简洁,核心逻辑就几个类,调试起来也方便。你只要稍微会点 Java,改改就能用。
源码里面有个简单例子,流程清晰,跑起来就能看到频繁项集和对应的关联规则。对比那些动不动就讲算法推导的教程,嗯,这份源码友好多了。
另外还有不少参考资源,如果你想深入看看别的实现方式,像支持
算法与数据结构
0
2025-07-02
数据挖掘论文研究基于FP-Tree的新型频繁项集挖掘算法
在数据挖掘领域,发现频繁项集是关键问题之一。提出了一种名为FP-SPMA的新型算法,基于FP-Tree结构,通过共享前缀和前瞻剪枝,显著提升了算法效率。相较于传统方法,该算法无需递归构造条件模式树,有效压缩了事务数据库。
数据挖掘
11
2024-07-17
一种用于挖掘频繁模式的高性能算法:LPS-Miner
我们提出了一种名为 LPS-Miner 的高效数据挖掘算法,用于挖掘事务数据库中的频繁模式。LPS-Miner 算法基于模式增长原理,并采用了...
数据挖掘
16
2024-05-27