在数据挖掘领域,发现频繁项集是关键问题之一。提出了一种名为FP-SPMA的新型算法,基于FP-Tree结构,通过共享前缀和前瞻剪枝,显著提升了算法效率。相较于传统方法,该算法无需递归构造条件模式树,有效压缩了事务数据库。
数据挖掘论文研究基于FP-Tree的新型频繁项集挖掘算法
相关推荐
基于有序FP-tree的最大频繁项集挖掘
基于有序FP-tree的最大频繁项集挖掘
概念提出: 完全前缀路径、有序FP-tree
有序FP-tree构建: 根据数据项所在层级建立
数据表示: 利用有序FP-tree表示数据
算法提出: MFIM算法,利用有序FP-tree中的完全前缀路径进行最大频繁项集挖掘
算法优化: 利用完全前缀路径对挖掘算法进行优化
实验结果: 对于浓密数据集中的长模式挖掘具有良好性能
数据挖掘
18
2024-05-25
HPFP-Miner 新型并行频繁项集挖掘算法研究论文
HPFP-Miner是一种创新的并行频繁项集挖掘算法,针对数据挖掘中的重要基础问题进行了深入研究。该算法由陈晓云和何艳珊提出,通过优化数据扫描过程,显著提升了效率。
数据挖掘
13
2024-07-23
提高频繁项集挖掘效率的MAXFP-Miner基于FP-Tree的创新方法
为了提高频繁项集的挖掘效率,提出了MAXFP-Miner,这是基于FP-Tree的最大频繁项集挖掘算法。首先建立FP-Tree,然后在此基础上构建MAXFP-Tree,其中包含所有最大频繁项集,大幅缩小了搜索空间并显著提高了算法的效率。算法分析和实验表明,MAXFP-Miner特别适用于挖掘稠密型和长频繁项集的数据集。
数据挖掘
11
2024-07-14
基于频繁项集的时态数据挖掘算法2003年
频繁项集的挖掘一直是数据里的大热门,尤其是在时态数据时。这篇文章研究了一个挺实用的算法,通过结合频繁项集和时态约束来挖掘关联规则。这种方法适合用在商品销售、股票价格预测等领域。而且,文章还贴心地给了一个股票数据的实际案例,感觉接地气。如果你对频繁项集或者关联规则感兴趣,这绝对值得一读!
数据挖掘
0
2025-06-16
并行频繁项集挖掘算法的优化研究
传统的挖掘频繁项集的并行算法存在节点间负载不均衡、同步开销过大、通信量大等问题。针对这些挑战,提出了一种名为多次传送重新分配数据的并行算法(MRPD)。在MRPD算法中,第l步将数据库重新划分成多个组,并根据各节点的需求多次传送这些组。各节点在异步地计算完整组后,可以得到所有频繁项集。理论分析和实验结果均表明,MRPD算法在优化并行频繁项集挖掘中具有显著效果。
数据挖掘
16
2024-07-16
基于有向项集图的最大频繁项集挖掘算法
本算法基于有向项集图存储事务数据库中频繁项集信息,采用三叉链表结构组织有向项集图,并在此基础上提出最大频繁项集挖掘算法。该算法一次扫描事务数据库,有效减少I/O开销,适用于稀疏和稠密数据库的最大频繁项集挖掘。
数据挖掘
16
2024-05-31
FP增长算法:一种高效的频繁项集挖掘技术
FP增长算法是一种用于发现频繁项集的数据挖掘技术,它摒弃了传统的“产生-测试”范式,而是利用一种名为FP树的紧凑数据结构来组织数据,并直接从FP树中提取频繁项集。
数据挖掘
12
2024-05-16
Apriori基于MapReduce的频繁项集挖掘
基于 MapReduce 的 Apriori 算法代码,用 Hadoop 干了件挺实用的事儿——并行挖频繁项集。Apriori 都知道,老牌的关联规则算法了,逻辑不复杂但跑起来慢,尤其数据一大就吃不消。这个实现把它拆成Mapper和Reducer,分布式并行跑,效率高不少。你只要关注两块:第一轮用AprioriPass1Mapper把事务里的每个项都拎出来,频次都设成 1;后面AprioriReducer再来聚合,搞清楚哪些项是“热门款”。逻辑清晰,结构也干净。
Hadoop
0
2025-06-16
Data Mining Understanding FP-Tree
数据挖掘中的FP树原理与应用
一、引言
在大数据处理与分析领域,数据挖掘技术扮演着至关重要的角色。其中,频繁模式挖掘是数据挖掘中的一个核心问题,它找出数据库中出现频率高于某个阈值的项集。FP树(Frequent Pattern tree)作为一种高效的数据结构,被广泛应用于频繁模式挖掘中。将围绕“数据挖掘FP树”的主题,深入探讨其基本概念、构建过程以及应用场景,并结合给定的部分内容进行具体分析。
二、FP树的基本概念
FP树是一种压缩且便于挖掘频繁模式的数据结构。通过这种结构可以有效地减少数据扫描次数,从而提高挖掘效率。在构建FP树的过程中,需要定义一个最小支持度计数(min_sup_coun
数据挖掘
11
2024-10-31