HPFP-Miner是一种创新的并行频繁项集挖掘算法,针对数据挖掘中的重要基础问题进行了深入研究。该算法由陈晓云和何艳珊提出,通过优化数据扫描过程,显著提升了效率。
HPFP-Miner 新型并行频繁项集挖掘算法研究论文
相关推荐
并行频繁项集挖掘算法的优化研究
传统的挖掘频繁项集的并行算法存在节点间负载不均衡、同步开销过大、通信量大等问题。针对这些挑战,提出了一种名为多次传送重新分配数据的并行算法(MRPD)。在MRPD算法中,第l步将数据库重新划分成多个组,并根据各节点的需求多次传送这些组。各节点在异步地计算完整组后,可以得到所有频繁项集。理论分析和实验结果均表明,MRPD算法在优化并行频繁项集挖掘中具有显著效果。
数据挖掘
16
2024-07-16
数据挖掘论文研究基于FP-Tree的新型频繁项集挖掘算法
在数据挖掘领域,发现频繁项集是关键问题之一。提出了一种名为FP-SPMA的新型算法,基于FP-Tree结构,通过共享前缀和前瞻剪枝,显著提升了算法效率。相较于传统方法,该算法无需递归构造条件模式树,有效压缩了事务数据库。
数据挖掘
11
2024-07-17
FP-Growth频繁项集挖掘算法
频繁项集挖掘里,FP-Growth可以说是性价比挺高的一个算法。它不靠一遍遍地扫数据,而是搭了个叫FP 树的结构,把重要信息一次性存起来,省时又省空间。构建这棵树的时候也不复杂,先把项按频率排好,再按顺序塞进树里。最妙的是,每个频繁项都能拆出来建一棵小树,继续挖掘——这就叫条件 FP 树。嗯,递归,效率还真不错。有意思的是,Christian Borgelt写了个C 语言实现,性能蛮不错,还整了个叫FP-Bonsai的剪枝方法,能自动把没用的项砍掉,进一步加速。想拿它做点项目,比如超市购物,或者推荐系统啥的,用它来找出用户常买的商品组合,还蛮实用的。如果你想上手,可以看看他和别人的对比实验,和
数据挖掘
0
2025-06-22
基于有向项集图的最大频繁项集挖掘算法
本算法基于有向项集图存储事务数据库中频繁项集信息,采用三叉链表结构组织有向项集图,并在此基础上提出最大频繁项集挖掘算法。该算法一次扫描事务数据库,有效减少I/O开销,适用于稀疏和稠密数据库的最大频繁项集挖掘。
数据挖掘
16
2024-05-31
MFWSR数据流上的频繁闭项集挖掘算法
MFWSR:数据流上的频繁闭项集挖掘算法,陶克,王意洁,数据流上频繁项集挖掘是数据挖掘有效手段之一,是相联规则挖掘的重要基础。频繁闭项集挖掘的结果更简洁而又能保留所有频繁项集的结果。
数据挖掘
9
2024-08-08
垂直数据格式挖掘频繁项集
垂直数据格式挖掘频繁项集可避免生成候选频繁项集,进而节省CPU开销。
数据挖掘
20
2024-05-25
Apriori基于MapReduce的频繁项集挖掘
基于 MapReduce 的 Apriori 算法代码,用 Hadoop 干了件挺实用的事儿——并行挖频繁项集。Apriori 都知道,老牌的关联规则算法了,逻辑不复杂但跑起来慢,尤其数据一大就吃不消。这个实现把它拆成Mapper和Reducer,分布式并行跑,效率高不少。你只要关注两块:第一轮用AprioriPass1Mapper把事务里的每个项都拎出来,频次都设成 1;后面AprioriReducer再来聚合,搞清楚哪些项是“热门款”。逻辑清晰,结构也干净。
Hadoop
0
2025-06-16
最大频繁项集快速更新算法FUMFS
FUMFS算法优化了最大频繁项集的维护,利用已有BitMatrix和最大频繁项集,有效地更新挖掘结果。
数据挖掘
20
2024-05-12
Apriori算法:频繁项集挖掘与关联规则学习
Apriori算法是一种用于数据挖掘的经典算法,其核心目标是发现数据集中频繁出现的项集以及学习部分关联规则。
算法特点:
迭代式方法: Apriori算法采用逐层迭代的方式,从单个频繁项开始,逐步生成更大的频繁项集。
支持度阈值: 通过设定最小支持度阈值,筛选出满足条件的频繁项集,有效控制结果数量。
关联规则生成: 基于频繁项集,Apriori算法可以推导出“一对多”或“多对一”形式的部分关联规则。
局限性:
无法处理多对多关联规则: Apriori算法目前版本仅支持生成一对多或多对一形式的关联规则,对于更复杂的多对多关联规则尚待改进。
数据挖掘
12
2024-05-24