持续学习之旅,今日分享机器学习常用数据集资源。
探索机器学习:第十五日数据集资源
相关推荐
机器学习资源
感谢大牛整理的机器学习资源:https://github.com/Flowerowl/Big_Data_Resources#大数据-数据挖掘
数据挖掘
17
2024-05-01
探索机器学习数据集:Facets可视化工具
探索机器学习数据集:Facets可视化工具
Facets项目提供了两种强大的可视化工具,可帮助您深入了解和分析机器学习数据集:
Facets概述: 获取数据集的高级视图,并进行逐个特征的统计分析。您可以使用它比较多个数据集的统计数据,并发现潜在问题,例如:
异常特征值
缺失值
训练/服务偏差
训练/测试/验证集偏差
Facets Dive: 深入探究数据集,并进行交互式探索。您可以识别数据中的模式、异常值和关系。
Facets可视化以Web组件形式呈现,并提供代码支持,方便您将其嵌入Jupyter笔记本或网页中。
关键优势:
异常检测
跨多个数据集的比较
交互式探索
易于集成
通
统计分析
10
2024-05-06
机器学习数据集优化下载
在机器学习领域,数据是驱动模型训练和性能优化的核心元素。本压缩包中包含了多个典型的数据集,用于训练和测试不同的机器学习算法,如线性回归、贝叶斯分类和K均值聚类等。具体包括:1. 线性回归数据集:lpsa.data,用于分析变量间的线性关联。2. 波士顿房价波动数据:包含多个房价预测的特征和目标变量。3. K均值聚类数据集:kmeans_data.txt,用于无监督学习中数据集的分组。4. 支持向量机数据集:sample_libsvm_data.txt,适用于支持向量机的学习和评估。这些数据集不仅帮助理解不同机器学习算法的工作原理,也是验证新算法的有效平台。
spark
13
2024-07-13
机器学习数据集汇总概览
在学习机器学习算法的过程中,我们常需数据来测试算法,但找到适合特定类型的数据并不容易。以下是几个常见的开源数据集汇总:1. UCI数据集,内容涵盖广泛,网址:http://archive.ics.uci.edu/ml/datasets.php;2. Kaggle竞赛数据集,各类数据齐全,网址:https://www.kaggle.com/datasets;3. ImageNet,计算机视觉数据,网址:http://image-net.org/;4. VisualData,计算机视觉数据,网址:https://www.visualdata.io/;5. MS COCO,计算机视觉数据,网址:ht
MySQL
14
2024-08-11
ScalaMl:探索机器学习算法的源代码资源
ScalaMl: 面向机器学习的 Scala
版本 0.99.1
© Patrick Nicolas,版权所有,2013-2016
概述
ScalaMl 的源代码为软件开发人员提供了一个关于机器学习算法差异的广泛视角。它面向具备一定 Scala 编程语言基础和基本统计知识的读者,并不要求读者具备数据挖掘和机器学习的经验。
源代码指南
源代码使用指南在 SourceCodeGuide.html 文档中进行详细说明。
示例应用
代码示例主要与投资组合管理和交易策略相关。
深入学习
对于对数学或库中实现的技术感兴趣的读者,建议参考以下书籍:
“机器学习:概率论” K. Murphy-麻省理工学院出
数据挖掘
19
2024-05-19
Spark机器学习资源下载
Spark作为大数据处理领域的主要框架,以其高效且易用的特点受到开发者的青睐。在机器学习领域,Spark通过其MLlib库提供了广泛的算法支持,使大规模数据上的模型训练和预测变得更加便捷。本资源“MachineLearningSpark.zip”专为学习者提供,帮助理解和应用Spark进行机器学习。MLlib库涵盖了监督学习(如逻辑回归、决策树、随机森林等)和无监督学习(如K-Means、PCA等)算法,基于分布式计算处理PB级别数据。通过DataFrame和RDD,Spark提供了高效的数据处理和并行计算能力。资源包含示例代码、数据集、说明文档和机器学习管道示例,帮助学习者掌握数据加载、特征
spark
15
2024-10-17
20个Weka机器学习数据集
该包含20个.arff格式数据集,源自机器学习和数据挖掘开源软件Weka。
数据挖掘
15
2024-05-20
机器学习常用开源数据集及数据挖掘、机器学习、深度学习的区别
机器学习常用开源数据集
在进行机器学习项目时,使用真实数据至关重要。许多开源数据集涵盖了多个领域,为机器学习研究和应用提供了丰富的资源。
寻找开源数据集的途径:
数据仓库平台: 许多平台专门收集和整理开源数据集,例如 Google Dataset Search、Kaggle Datasets、UCI Machine Learning Repository 等。
相关领域网站: 许多研究机构或组织会发布自己领域内的开源数据集,例如医疗、金融、图像识别等。
数据挖掘、机器学习、深度学习的区别
数据挖掘 侧重于从数据中发现模式和规律,并利用算法模型进行分析。其核心目标是揭示数据变量之间的关系,
数据挖掘
15
2024-07-01
共享单车数据集资源免费提供
数据集包含时间、季节、温度、湿度、风速等多项数据。我们可以探索以下几个问题:1. 共享单车用户总体使用趋势如何?是增长还是减少?2. 季节对共享单车使用的影响如何?夏季炎热、冬季寒冷,春秋适宜的天气是否影响骑行人群的偏好?3. 一天24小时内,共享单车使用量是否有显著变化?时间与共享单车使用的关联如何?4. 天气条件对共享单车使用的影响是什么?一般来说,良好的天气是否会增加骑行人数?5. 风速、温度等因素对共享单车使用的影响是怎样的?哪种风速、什么样的温度最适合骑行?6. 注册用户和非注册用户的租车情况之间是否存在某些潜在的关系?数据集完整且无缺失值,未经过预处理。
数据挖掘
7
2024-09-16