要查看代码并详细描述,请参阅A. Meucci (2005)的《强韧贝叶斯分派》。获取最新版本的文章和代码,请访问http://symmys.com/node/102。
强韧贝叶斯分派资产组合优化,风险评估控制-MATLAB开发
相关推荐
贝叶斯探索市场:智能资产配置
运用贝叶斯方法探索市场,实现智能资产分配,有效提升投资回报。
数据挖掘
18
2024-04-30
系统风险评估和分析框架MATLAB开发
此脚本计算和分析以下系统风险度量:组件测量如Kritzman等人的AR(吸收率)(2010),Allen等人的CATFIN (2012),Kinlaw & Turkington (2012)的CS(相关意外),以及Kritzman & Li (2010)的TI(湍流指数)。此外,还包括主成分分析连通性措施如DCI(动态因果指数)、CIO(“进出”连接)、CIOO(“进出-其他”连接),以及网络中心性指标如介数、度数、接近度、聚类。
Matlab
9
2024-08-09
贝叶斯公式与朴素贝叶斯
贝叶斯公式描述了事件在已知条件下发生的概率。朴素贝叶斯是一种机器学习算法,它假设特征在给定类的情况下相互独立。
算法与数据结构
18
2024-05-13
贝叶斯自适应直接搜索(BADS)优化器MATLAB中的新贝叶斯优化算法开发
BADS是一种创新的快速贝叶斯优化算法,专为解决复杂的优化问题而设计,特别是那些涉及到模型拟合(如最大似然估计)的情况。在各种基准测试中,BADS表现出色,与其他流行的MATLAB优化器(如fminsearch、fmincon和cmaes [1])相比具有相当甚至更好的性能。目前,BADS已被全球多个计算实验室广泛采用,涉及领域从行为、认知和计算神经科学到工程和经济学等,被引用和应用超过一百次。对于那些缺乏梯度信息或目标函数为非分析或嘈杂的情况,例如通过数值逼近或模拟评估的问题,BADS是一个理想的选择。与其他内置的MATLAB优化器(如fminsearch)一样,BADS操作简便,无需复杂的
Matlab
16
2024-08-09
贝叶斯学派观点6.4贝叶斯估计
贝叶斯估计的思路挺的,属于那种一上手就能让人眼前一亮的类型。它不把概率当成现实中发生的频率,而是当成你对某件事的信心值——比如你觉得模型参数是多少,就可以用分布来表达。参数不再是死板的定值,而是有了“性格”的变量,你可以给它们分布,做推断,甚至算个区间,挺有弹性的。点估计、区间估计这些东西在贝叶斯里用起来顺手多了。如果你是搞机器学习、数据挖掘或者对概率建模感兴趣的前端或工程类选手,那这个资源还蛮值得一看。顺手放几个还不错的相关文章,比如状态估计的 Matlab 实现,或者是区间估计在 ANSYS 工程里的应用,都是实用的例子。建议你在用的时候注意一点,贝叶斯方法虽然灵活,但计算量也不小,尤其是
数据挖掘
0
2025-06-18
贝叶斯决策理论最小风险分类方法
分类器的实战资料里,贝叶斯决策理论这套内容还蛮值得一看的,思路清晰,例题也不少。嗯,讲到了正态分布下怎么用最小风险做判断,还把Bayes 分类器和决策树做了对比,蛮有参考价值的。
里面关于分类错误率和风险最小化那一块讲得比较细。尤其是聂曼-皮尔逊准则那段,适合做二分类的兄弟参考下。响应也快,理论结合得还算实用。新手刚入门也不会太吃力。
如果你是做机器学习或者数据挖掘那一挂的,这套资料可以帮你理清决策层的逻辑。而且里面还有带代码的例题,比如用Bayes 分类器算最小错误率,挺贴合实际场景。
建议你也顺手看看相关链接:Matlab 贝叶斯分类器,还有个关于最小风险的案例也不错,点这儿:基于最小风险
数据挖掘
0
2025-06-30
贝叶斯项目反应建模贝叶斯统计方法应用
贝叶斯项目反应建模其实挺有意思的,主要就是运用贝叶斯统计方法对项目反应数据进行建模。它背后的核心理论是项目反应理论(IRT),广泛应用于教育评估和心理测量领域。知道,传统方法多依赖频率统计,而贝叶斯方法就显得比较灵活,它能结合先验信息和新数据来更新模型,适合不确定性。对于需要估计能力水平和测试题目特性的研究来说,贝叶斯方法的强大潜力不言而喻。你如果做这方面的研究,不妨看看 Jean-Paul Fox 的书《Bayesian Item Response Modeling: Theory and Applications》,里面详细了贝叶斯方法在项目反应建模中的应用,尤其适合社会与行为科学领域的研
算法与数据结构
0
2025-06-24
使用Matlab开发贝叶斯自回归建模
Matlab开发贝叶斯自回归建模,涵盖了贝叶斯单变量自回归模型的规范和估计过程。
Matlab
8
2024-08-04
Matlab贝叶斯工具包
此Matlab工具包涵盖了各种贝叶斯算法(如k2、爬山算法)。它提供了从导入到MATLAB的使用指南,是学习贝叶斯网络的宝贵工具。
Matlab
20
2024-05-16