这是模式识别老师布置的作业,要求设计基于BP算法的分类器。仅供参考。
模式识别基于BP算法的分类器设计作业
相关推荐
基于BLS的模式识别算法探索
本研究引入宽度学习系统(BLS)于模式识别领域,提出一种新的基于BLS的模式识别算法。以不同类别的数据集为例进行分析,验证算法在识别关键特征时的有效性。实验结果显示,该算法在处理复杂模式识别任务时表现出色,证明了其在实际应用中的潜力。
数据挖掘
14
2024-10-12
Matlab实现模式识别中的Fisher算法
Matlab编程可应用于模式识别领域的Fisher算法,该算法在数据分类和特征选择中广泛使用。
Matlab
12
2024-07-21
Boosting算法的应用及其分类器
Boosting算法是一种集成学习技术,通过组合一系列基本分类器来构建一个强大的分类器,每个基本分类器根据其性能和权重不同。这些算法包括Adaboost、提升树和GBDT,它们基于不同的损失函数和样本权重调整机制。Adaboost使用加权样本来训练每个基本分类器,而提升树则基于前一轮学习的残差进行优化。
算法与数据结构
18
2024-07-16
模式识别导论概论
北京邮电大学盛立东教授主讲《模式识别导论》课件,包含模式识别基本概念、模式分类与聚类、特征提取、机器学习方法在模式识别中的应用等内容。
Matlab
19
2024-04-30
基于Python的面部表情识别代码-K近邻分类器知识网络
基于Python的面部表情识别代码,采用K近邻分类器进行数据集验证。实现了10倍交叉验证和留一法交叉验证,计算分类精度。运行环境要求Python 3.5+,需要的Python库包括numpy、scipy、xlrd和sklearn。具体实现步骤包括使用K近邻算法进行分类,并在不同验证方式下评估分类器的性能。
Matlab
11
2024-07-31
压缩分类器基于随机投影实现MATLAB开发的鲁棒降维分类器
SC - 稀疏分类器,FSC - 快速稀疏分类器,GSC - 群稀疏分类器,FGSC - 快速群稀疏分类器,NSC - 最近子空间分类器,使用SPGL1 - [链接] 进行稀疏化,使用GroupSparseBox - [链接],更多详情请参阅 [链接]。
Matlab
11
2024-07-22
模式识别导论第07章:句法结构模式识别
依据规则Ⅱ进行文法推导:
VT:δ(q0, a) = (q0, λ ),δ(q0, b,b) = (q0, λ ),δ(q0, c) = (q0, λ ),δ(q0, d) = (q0, λ )
以 x=caadbb 为例,根据规则Ⅰ和Ⅱ合成新规则进行推导:
(q0, S ) →无(先输入空格λ),由此得到
(q0, S) (q0, CA) (q0,aAb) (q0,aAbb) (q0,dbb) (q0,b ) (q0, λ)
完成推导。
Matlab
10
2024-05-26
北京邮电大学模式识别课件:模糊模式识别
分享北京邮电大学模式识别课程的课件资料,内容为《模式识别导论》第八章:模糊模式识别。
Matlab
14
2024-05-25
Matlab模式识别方法
Matlab模式识别方法的实现和应用在不同领域中广泛探讨。
Matlab
11
2024-09-23