这本由IEEE授权、美国学者撰写的著作,对各类数据挖掘算法进行了深入浅出的讲解。
深入解析数据挖掘算法:IEEE权威指南
相关推荐
深入解析 SQL Server 2005 数据挖掘算法
SQL Server 2005 数据挖掘算法深度剖析
本系列资源共三部分,前两部分已发布,此为第三部分。将带您深入探索 SQL Server 2005 中强大的数据挖掘算法,助力您从入门到精通。
数据挖掘
10
2024-05-01
Hadoop权威指南深入解析
《Hadoop权威指南》是大数据领域的一本经典著作,它深入浅出地介绍了Apache Hadoop这一开源分布式计算框架。Hadoop由Doug Cutting和Mike Cafarella共同创建,处理和存储海量数据,尤其适合大规模数据分析。这本书是理解Hadoop及其生态系统的关键资源。
Hadoop概述:Hadoop的核心由两个主要组件构成——HDFS(Hadoop Distributed File System)和MapReduce。HDFS是分布式文件系统,提供高容错性和高可用性,使得数据可以在多台廉价服务器上进行冗余存储。MapReduce则是一种编程模型,用于处理和生成大数据集
Hadoop
11
2024-11-04
数据挖掘算法解析
数据挖掘常用算法原理
本资源解析数据挖掘领域常见算法,例如决策树、聚类等,阐述其原理和应用。
决策树: 通过树状结构进行决策,每个节点代表一个属性测试,每个分支代表测试结果,最终叶子节点代表决策结果。
聚类: 将数据集中的对象根据相似性进行分组,同一组内的对象彼此相似,不同组之间的对象差异较大。
数据挖掘
13
2024-05-21
深入解析HBase:权威指南
涵盖12个章节与6个附录,全面解析HBase的架构、原理、操作与应用。从基础概念到高级特性,深入探索HBase的各个方面,助您掌握这一强大的NoSQL数据库技术。
Hbase
19
2024-05-06
深入解析SQLite权威指南
SQLite权威指南详细解读####一、书籍介绍- 书名及作者:“SQLite权威指南”是Michael Owens编写的,首次出版于2006年。本书为学习SQLite数据库系统提供全面且深入的资源。 - 推荐者的观点:推荐者分享了他对SQLite的兴趣,特别是在中文资源稀缺的情况下,他通过阅读和翻译部分章节来推广SQLite。虽然英语水平有限,但他鼓励对SQLite感兴趣但无法阅读英文的读者尝试阅读原著。 - 版权与分享:尽管SQLite本身没有版权,但本书受到版权保护。推荐者的翻译行为推广SQLite及其相关知识。 ####二、目录概览- 总目录:包括前言、SQLite介绍、入门、关系模型
SQLite
12
2024-08-13
数据挖掘概念、模型、方法与算法的深入解析
数据挖掘是一种从海量数据中提取有价值知识的过程,它结合了计算机科学、统计学和机器学习等领域的技术。书籍《数据挖掘—概念、模型、方法和算法》深入浅出地介绍了数据挖掘领域的重要概念、核心模型、实用方法以及常用算法,为读者提供了一个全面的学习框架。
数据挖掘的概念
数据挖掘不仅是简单的数据查找或分析,而是通过复杂技术揭示隐藏在数据背后的模式、趋势和关系。这些发现可应用于预测、分类、聚类和关联规则学习,帮助企业和机构做出更明智的决策。
数据挖掘模型
本书涵盖了一系列常用的数据挖掘模型,包括决策树、随机森林、支持向量机(SVM)、神经网络、朴素贝叶斯、K均值聚类和Apriori关联规则等。每种模型都有其
数据挖掘
8
2024-10-26
Web数据挖掘的深入解析
Web数据挖掘简介
Web数据挖掘是指从Web数据中提取有价值的信息,通过分析Web页面、用户行为等数据,揭示潜在的模式和规律。它在当今的信息化社会中具有广泛的应用,如精准营销、个性化推荐和社交媒体分析等。
Web数据挖掘的核心流程
数据收集:获取所需的Web数据资源,包括结构化数据和非结构化数据。
数据预处理:对原始数据进行清洗、格式化和转换,以适应挖掘需求。
数据分析:使用统计分析和机器学习方法挖掘潜在模式。
结果应用:将挖掘结果应用于特定业务场景,实现数据驱动的决策支持。
Web数据挖掘的主要应用场景
搜索引擎优化:通过分析用户搜索行为优化关键词。
个性化推荐:根据用户行为数据推荐
数据挖掘
15
2024-10-28
深入解析DATAMINE:数据挖掘核心技术与算法
作为数据挖掘领域的奠基性著作,DATAMINE 深入浅出地讲解了数据挖掘的基础理论和核心技术,并对一系列经典算法进行了详细阐述。本书理论框架严谨,内容翔实,适合希望系统学习数据挖掘技术的读者。
数据挖掘
12
2024-05-23
深入Apriori算法:数据挖掘利器
Apriori算法作为数据挖掘领域中的知名算法,能够揭示数据集中的关联规则,帮助我们理解数据内在的联系。其核心思想是通过迭代搜索频繁项集,并利用频繁项集生成关联规则。Apriori算法的应用范围广泛,涵盖市场分析、推荐系统、医疗诊断等多个领域。
DB2
16
2024-04-30