本资源提供了平方根容积卡尔曼滤波(SRCKF)与无反馈最优分布式融合的仿真程序,适用于研究分布式滤波信息融合方法,有助于深入理解滤波算法和信息融合的概念和流程。
平方根容积卡尔曼滤波(SRCKF)与无反馈最优分布式融合
相关推荐
超越平方根:改进平方根定律的 Matlab 工具
changesqrt 项目提供了一种改进平方根定律算法的 Matlab 实现。该工具能够更精确、高效地计算平方根,并可应用于信号处理、图像处理等多个领域。
Matlab
13
2024-05-23
对比无迹卡尔曼滤波与扩展卡尔曼纳滤波
比较了无迹卡尔曼滤波和扩展卡尔曼纳滤波在预测性能上的差异,提供一个程序可改的比较框架,方便根据需求自定义函数。
Matlab
8
2024-08-04
卡尔曼平滑滤波在Matlab中的应用无迹卡尔曼滤波器
卡尔曼滤波是一种常用的技术,在Matlab中实现无迹卡尔曼滤波器时,可以借助于Yi Cao教授于2011年发布的代码。该滤波器能够根据输出历史进行准确的预测和平滑处理,特别是在预测噪声范围可控的情况下,其跟踪和平滑性能得到显著提升。
Matlab
8
2024-09-23
卡尔曼滤波理论与应用
概述了卡尔曼滤波的理论和应用,包括卡尔曼滤波简介和相关资料。
Matlab
23
2024-05-15
统计量及其分布:估计最优状态-卡尔曼滤波、h∞滤波和非线性滤波
总体:该地区的所有电视用户
样本:被访问的电话用户
总体:任意100名成年男子中吸烟人数
样本:50名学生调查所得的吸烟人数,每位学生调查100人
总体:每一盒盒装产品的不合格品数
样本:被抽取的n盒产品中每一盒的不合格品数
总体:鱼塘中的所有鱼
样本:一天后再从鱼塘里打捞出的一网鱼
总体:该厂生产的全体电容器的寿命
样本:被抽取的n件电容器
算法与数据结构
14
2024-04-30
卡尔曼滤波:原理与实现
卡尔曼滤波:原理与实现
原理:卡尔曼滤波是一种用于估计状态(位置和速度等)的递归算法,该算法考虑了测量不确定性和过程噪声。其核心思想是使用来自过程模型的预测估计和来自测量模型的测量估计,通过加权平均来得到最优估计。
实现:卡尔曼滤波可以使用各种编程语言实现,包括 MATLAB、C 和 C++。实现时需要指定过程模型、测量模型、初始状态估计和协方差矩阵。
应用:卡尔曼滤波广泛应用于各种领域,例如导航、控制和数据处理。它可以有效地处理测量不确定性和过程噪声,并为动态系统提供准确的状态估计。
Matlab
16
2024-05-30
矩阵平方根与MATLAB中的计算
(10)矩阵平方根:sqrtm(a)。 (11)计算矩阵的秩:rank(a)。生成特殊矩阵的方法包括:(1)zeros(n):生成n×n阶的零矩阵。 (2)zeros(m,n):生成m×n阶的零矩阵。 (3)zeros(size(a)):生成与矩阵a相同阶数的零矩阵。
Matlab
11
2024-08-12
卡尔曼滤波的MATLAB实现
卡尔曼滤波是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。介绍了卡尔曼滤波的MATLAB实现方法,详细讨论了其在实际应用中的效果和优势。
Matlab
11
2024-07-13
卡尔曼滤波学习资源分享
分享一些与卡尔曼滤波相关的资料,供大家共同研究。
Matlab
15
2024-08-12