谢麟炯介绍了唯品会海量数据实时 OLAP 分析实践。
谢麟炯唯品会海量数据实时 OLAP 分析实践
相关推荐
Flink CDC 助力海量数据实时同步与转换
Flink CDC 助力海量数据实时同步与转换
Flink CDC 是一种基于 Flink 的变更数据捕获技术,能够实时捕获数据库中的数据变更,并将其转换成可供 Flink 处理的流数据。
Flink CDC 的优势:
低延迟: Flink CDC 能够以极低的延迟捕获数据变更,确保数据的实时性。
高吞吐: Flink CDC 能够处理海量数据变更,满足高吞吐的需求。
易用性: Flink CDC 提供了简单易用的 API,方便用户进行开发和维护。
应用场景:
实时数据仓库: 将数据库中的数据变更实时同步到数据仓库,实现数据仓库的实时更新。
实时数据分析: 基于 Flink CDC 捕获
flink
20
2024-05-12
唯品会的大数据分析优化
唯品会正在积极推动数据平台和实时计算平台的建设,以优化其大数据分析能力。这些举措不仅提升了系统架构的稳定性,还在实际应用中取得了显著成效。
Hadoop
16
2024-07-16
大数据实践—Storm流计算实时异常监控
采用Storm流计算构建日志收集系统,实时汇聚日志数据,并结合离线数据分析,通过预先设定的规则对数据进行异常监测,实现实时告警和及时响应。
算法与数据结构
23
2024-04-30
PHP在大数据实时分析中的应用
由于提供的文件内容为乱码,无法直接解读具体的知识点。但是,基于标题和描述提供的信息,我们可以讨论PHP用于大数据实时分析的相关知识点。PHP作为一种广泛使用的服务器端脚本语言,在传统的网站开发和小型到中型的数据处理中有着丰富的经验。随着计算机硬件性能的提升和PHP语言的优化,PHP在处理大数据量和实时分析方面也有了不少进展。实时分析要求在数据产生的同时即刻对其进行处理和分析,这对金融交易、在线营销等应用场景尤为重要。为了实现大数据量的实时分析,PHP通常与其他技术如命令行工具、数据流处理服务(如Apache Kafka或RabbitMQ)以及Socket编程等协同工作。面对性能问题和数据库优化
算法与数据结构
12
2024-10-15
Druid 实时 OLAP 数据仓库架构解析
海量数据处理: 可扩展至 PB 级数据,满足大规模数据需求。
亚秒级响应: 即时导入,查询响应速度达亚秒级,实现实时数据分析。
高可用性: 分布式容错架构,确保无宕机运行,保障数据可靠性。
存储高效: 采用列存储和压缩技术,大幅减少数据存储空间,节省存储成本。
高并发支持: 支持面向用户应用,可满足高并发访问需求。
Hadoop
14
2024-04-30
Druid大数据实时分析存储框架的详尽解读
Druid大数据实时分析存储框架,涵盖了精彩的PPT分享内容,支持交互式查询。可以执行即席查询以毫秒为单位,用于分组、筛选和数据聚合。Druid非常适合驱动多租户用户界面应用程序。
算法与数据结构
17
2024-07-20
Redis大数据实践指南
Redis大数据之路PDF文档,由唐福林编著。本指南提供Redis快速入門教程。
Redis
8
2024-04-30
Pig 大数据实践指南
探索 Pig 的实战应用,掌握大数据处理的强大工具。
Hadoop
11
2024-04-30
基于Kettle+Clickhouse+Superset打造大数据实时分析平台
本课程结合Kettle、Clickhouse和Superset三大开源工具,构建一个高效的实时数据分析平台。课程以互联网电商实际业务为案例,详细介绍了数据处理的各个环节,包括流量分析、新增用户分析、活跃用户分析、订单分析和团购分析。这个平台不仅能够处理海量数据,还支持PC、移动和小程序端的数据分析需求。
flink
15
2024-08-09