社团发现代码Matlab微小障碍物发现冯雪创作的官方Matlab实现,ICRA 2019介绍该存储库包含微小障碍物发现新框架的官方Matlab实现。这篇论文已被IEEE机器人与自动化国际会议(ICRA) 2019接受。Python/ROS的官方实现即将推出。注:此版本在原作的基础上略有改进,训练代码略有改动,ROC性能有所提升。为了提高效率,基本边缘检测算法使用结构化边缘检测[1]。系统中的模块在很大程度上得到了加速,尽管仍有很大的改进空间。在实例级评估中,IoU被定义为预测提议和真实边界框之间的交集,可以在./evaluation/Func_evaluation_DR.m找到引文。如果你觉得这篇论文或代码有用,请引用我们的论文:@INPROCEEDINGS{Xue_ICRA_2019, Author = {Feng Xue, Anlong Ming, Menghan Zhou and Yu Zhou}, booktitle={2019 International C
社团发现代码Matlab微小障碍物发现新框架的官方实现,ICRA
相关推荐
matlab程序障碍物影响下的雷达视距计算
这是一段matlab程序,用于计算在雷达探测方向上有障碍物时对雷达视距的影响。
Matlab
12
2024-09-16
EM算法与De novo Motif发现MATLAB实现
EM 算法的 Matlab 实现,搭配 De novo motif 发现,算是生信圈里比较经典的一套组合了。代码结构清晰,文档也挺详细,适合你边看边跑着玩。EM 算法的核心就是反复迭代找最优解,说白了就两个步骤:猜一猜(E 步),修一修(M 步)。用在 motif 发现上,基本就是从一堆序列里挖出“有意思”的小片段,比如转录因子结合位点。De novo motif 发现比较像无监督学习,没标签全靠算法自己摸索。有点像从一堆歌词里找出高频押韵的句子。常见方法像是Gibbs 采样、MEME,都是围着概率模型打转的。这份资源的 MATLAB 代码就不错,逻辑清楚,参数设置也比较灵活。你可以自己改改迭
算法与数据结构
0
2025-06-17
研究论文-一种自然聚类发现的新算法.pdf
当前的聚类方法如K-means和DBSCAN采用全局参数,难以准确发现数据的自然聚类结构。新提出的分级聚类算法CluFNC通过调整网格大小、噪声阈值和神经节点数量,能够在数据空间中精确识别内部聚类特征。该算法首先根据参数划分数据空间网格,然后利用高斯影响函数计算每个单元的场强,接着运用SOM算法对网格位置和场强进行聚类,最后通过Chameleon算法对SOM聚类得到的神经网络节点权值进行最终的数据空间聚类映射。理论和实验结果表明,该算法能有效发现数据中的自然聚类特性。
数据挖掘
16
2024-07-31
MATLAB实验室粒子发现项目的登录代码下载
ParticleDiscoveryLab提供基于MATLAB的项目,用于下载登录代码。该实验室的目标是通过使用CMSOpenData提供的数据资源,为本科中级实验室练习提供补充。学生和教师可以使用MATLAB和Python解决方案进行学习,无需ROOT或开放数据虚拟机。实验涵盖从未知粒子X的初始状态到其2μs衰变的重构,并包括使用直方图计算其质量,学习拟合技术及背景贡献的消除。通过数据分析和不确定性传播概念,学生可确定其发现的粒子特性(质量和宽度),并与已知特性进行对比。DoubleMuParked数据集提供了基于Web的事件交互式研究工具,以便学生在笔记本电脑上进行快速操作。
Matlab
15
2024-09-27
发现数据团队文件解析
RFP提案:FindData项目名称链接到RFP:RFP类别devtools-libraries提案人:finddataio您是否同意在MIT和APACHE2许可下开放您代表该RFP和双重许可所做的所有工作的源代码?是项目简介概述互联网和区块链每天都会生成大量数据,包括由应用程序,行为和机器生成的数据。通过数据的管理和分析,我们可以发现数据中包含的巨大价值,并了解和洞察事物的内在本质。大数据已经成为人类了解世界的一种手段,数据正在不断改变人们的生活方式,经济规则,商业模式,甚至推动着整个社会和经济的创新与变革。基于全球区块链节点网络资源,创建了一个高度可配置但易于操作的数据采集机器人和数据资产
数据挖掘
14
2024-07-16
Girvan-Newman算法C++实现社区发现
GN 算法,或者说是 Girvan-Newman 算法,挺有意思的,它主要用于网络中的社区结构。简单来说,就是根据网络节点间的连接强度,分割成不同的社区。说到 C++实现这个算法,蛮适合的,毕竟 C++在计算密集型任务上表现优秀,像是这个算法需要大量的图计算,C++的高效性就派上用场了。
算法的核心步骤也挺,需要构建网络模型(你可以用邻接矩阵或邻接表)。计算每条边的模割度,这是判断社区划分质量的一个指标。就是迭代优化,删除某些边,看看能不能提高模割度,把网络分成稳定的社区。
如果你正好在做相关的网络,C++实现的 GN 算法肯定能帮到你。这里有个压缩包,里面有完整的代码,按照文件里的提示,就可
算法与数据结构
0
2025-07-02
数据探索与发现.rar
数据探索--基础与技术.pdf金融软件开发必备指南压缩版.pdf中国银行业务全面指南.pdf
Oracle
11
2024-08-21
VMD Matlab实现代码
VMD 算法的 Matlab 代码,注释写得蛮详细,适合你快速搞明白怎么用,还能跟作者的博客搭配着看,效率更高。
算法与数据结构
0
2025-07-02
数据世界的宝藏:探索与发现
深入浅出地阐述数据挖掘的核心概念,并结合实际案例讲解数据挖掘的常用技术,帮助读者掌握从海量数据中提取有价值信息的方法和工具。
数据挖掘
13
2024-05-23