本资源讲解判别分析概念、Fisher线性判别,并提供相关算例。
线性判别分析概念和应用
相关推荐
判别分析效果评估方法
留一法交叉验证: 将已知类别样本逐个剔除,利用剩余样本构建判别函数,对被剔除样本进行判别。
错误率计算: 记录所有被错判的样本,分别计算每个类别和整体的错判率。
效果衡量: 根据错判率的大小评估判别分析的效果,错判率越低,判别效果越好。
统计分析
14
2024-04-30
MATLAB实现判别分析案例
判别分析是一种统计分析方法,用于根据一组特征值识别不同类型的数据。它涉及使用判别函数来确定数据点属于哪一类。MATLAB提供了对判别分析的全面实现,使其能够轻松应用于各种分类任务。
统计分析
12
2024-05-15
线性判别分析模型预测结果详解-TinyXML指南[中文]
详细讲解了图9.14中线性判别分析模型的预测结果,帮助读者深入理解该模型的运作原理及其在TinyXML中的应用。
算法与数据结构
13
2024-07-25
线性判别分析LDA多分类实现及R语言代码
线性判别(LDA)挺常用的,适合用来做多分类任务。如果你想搞清楚怎么用它来分类数据,LDA 会是一个不错的选择。简单来说,它通过寻找不同类别之间的最大差异来进行分类。你可以理解为,它会优化一些系数,让数据的分类效果最好。,LDA 还是有些假设条件,比如数据得符合正态分布,且同类数据的方差差不多。如果你在用 R 语言,LDA 的实现也蛮。可以通过一些经典的例子,比如鸢尾花数据集,来快速上手。R 语言里的实现方式和理论结合起来,用起来方便,能帮你快速掌握 LDA 的核心思想。不过有个小提醒,LDA 对数据的预要求也不小。你需要把数据先进行标准化,再输入 LDA 模型,这样能让结果更加准确。如果你需
算法与数据结构
0
2025-07-02
MATLAB中的判别分析技术
判别分析是一种重要的数据分析方法,广泛应用于统计学和机器学习领域。在MATLAB中,判别分析可以通过多种方法实现,例如线性判别分析(LDA)、二次判别分析(QDA)和支持向量机(SVM)等。这些方法不仅能够帮助研究人员有效地处理数据,还可以提供高效的分类和预测能力。此外,MATLAB还提供了丰富的资源,包括相关的源码和PPT,帮助用户深入理解和应用判别分析技术。
Matlab
18
2024-08-25
判别分析-多元统计分析
判别分析用于对样本分类,可分为以下方法:- 距离判别法:利用样本间的距离进行分类- 贝叶斯判别法:基于贝叶斯定理进行分类- 费歇尔判别法:最大化样本组间方差与组内方差的比值进行分类
统计分析
13
2024-05-13
绝对距离判别分析MATLAB示例
绝对距离的计算方法,在 MATLAB 里真的是老少咸宜、上手快。sum(abs(x - y))这句,几乎是入门数据都会用到的操作,行向量、列向量都能搞定,灵活得。如果你想更快捷一点,还有个mandist(x, y'),专门配合行向量,直接就给出结果,挺省事。
在做判别时,距离计算是绕不开的一个环节。比如你拿到两组 n 维向量,像x = [x1, x2, ..., xn]和y = [y1; y2; ...; yn]这种,一句sum(abs(x - y'))就能搞定绝对距离,简单直接,适合快速判断样本之间的差异。
这篇资源的还算到位,关键点都有提到,代码也贴得挺清楚的。你要是经常用 MATLAB
Matlab
0
2025-06-13
Bayes判别分析及算例解析
基于王斌会《多元统计分析及R语言建模》书籍内容,本视频对第六章第四节Bayes判别分析展开详细阐述,并结合实际案例深入讲解,帮助学习者更好地理解和掌握Bayes判别分析方法。
统计分析
18
2024-05-23
基于Fisher线性判别分析(LDA)的分类案例数据集
数据集包含基于气候数据进行分类的Fisher线性判别分析(LDA)示例。
数据挖掘
12
2024-05-13