Fisher 的 Iris 数据集常被用作神经网络程序的测试数据集。数据集包含鸢尾花属植物的萼片和花瓣的长度和宽度数据。通过将类用数字标识(0-2),数据变为适合神经网络训练的格式。
Iris 数据集:神经网络分类任务
相关推荐
Iris分类数据集
iris.csv 的分类数据,真的是机器学习入门选手绕不开的一份宝藏资源。数据结构清晰,三个类别,四个特征,CSV 格式直接拿来用,适合你练手分类模型。不管你用的是 Python 的scikit-learn,还是 Weka 这些可视化工具,都挺方便的。你要是想了解数据集背景,鸢尾花(Iris flower)本身也是个经典的案例。
我自己最早也是拿它来试了下逻辑回归,后来又用在神经网络上测试分类效果。说实话,数据量不大,跑得快,调参也不烦,反馈快,哪怕你代码写得不太优,也能快发现问题。像train_test_split分个训练集测试集,几行代码就能跑起来。
如果你用 Weka 的话,别错过这个I
spark
0
2025-06-16
利用自行构建的卷积神经网络完成CIFAR-10数据集分类任务
我利用自己构建的卷积神经网络成功实现了CIFAR-10数据集的分类任务。
算法与数据结构
7
2024-10-12
使用神经网络解决蘑菇数据集的分类问题-MATLAB代码
利用MATLAB机器学习工具箱,我解决了蘑菇数据集的分类问题。我的解决方案包含在名为“solution.csv”的文件中,其中包含了对给定数据的类别预测。此外,存储库中的“solution_code.m”文件包含了完整的源代码。我采用了深度学习方法,使用具有单个隐藏层的神经网络进行了学习过程。我首先对数据集进行了分析,并剔除了对模型无帮助的属性,如'gill-attachment'中97.64%的值为'f'、'veil-type'中100%的值为'p'以及'veil-colour'中97.73%的值为'w'。随后,我注意到某些属性中特定值在数据集的底部更为集中,而在顶部较少,因此我对其进行了随
Matlab
13
2024-07-23
WEKA中文教程IRIS数据集分类示例
IRIS 数据集的分类示例,用的是WEKA工具,操作简单、界面友好,蛮适合刚入门机器学习的同学。数据清洗啥的不用太多操作,点点按钮就能跑结果,挺适合做课堂演示或者小项目练手的。
用J48决策树或者NaiveBayes模型跑一遍,准确率还不错,分类结果可视化也方便。你可以换着算法试试,像RandomForest这种集成模型,用起来也没门槛,拖一下就能上。
如果你还不太熟WEKA,建议看看这几个教程:WEKA 分类模型评估教程、WEKA 数据挖掘:分类与回归详解,都有中文,图文还挺详细。
顺带提一句,Iris数据本身结构清晰,特征不多但区分度挺好,适合用来测试各种分类器。你甚至可以拿去和BP 神经
Hadoop
0
2025-06-13
亚马逊商品共购网络数据集图神经网络应用
亚马逊的商品共购网络数据,节点有 40 多万,边也有 300 多万,量挺大,用来做图算法训练蛮合适。文件格式是FromNodeId ToNodeId,也就是你可以直接拿去喂给NetworkX、PyTorch Geometric这种图工具用,省了不少预麻烦。
用来跑个协同过滤、图卷积啥的,挺香。比如你想模拟“买了 A 也买 B”的场景,这种图结构数据就适合。响应快,代码也比较直观。文件名是Amazon0601.txt,纯文本,压缩包解出来就能用。
哦对了,还能搭配一些用户行为工具一起玩,像之前看到一篇协同过滤算法的文章里就用过类似数据,挺有参考价值的。还有个amazon-parser的 matl
spark
0
2025-06-15
MATLAB神经网络BP神经网络数据分类与语音特征信号分类案例分析
MATLAB神经网络43个案例分析BP神经网络的数据分类-语音特征信号分类.zip
Matlab
13
2024-09-30
使用BP算法分类Iris数据集的实现教程
数据结构是计算机存储、组织数据的方式,涉及到数据的逻辑结构、物理结构以及对数据的基本操作。数据结构的选择会影响程序的效率、可读性和可维护性。常见的数据结构有数组、链表、栈、队列、树、图等。算法则是解决特定问题的步骤,是对数据运算和操作的详细描述。算法的设计和选择直接影响程序的效率,因此在设计和选择算法时,需要考虑到时间复杂度、空间复杂度等因素。在实际应用中,数据结构和算法常常是密不可分的。通过对数据结构的理解和运用,以及对算法的学习和研究,可以帮助我们更有效地解决实际问题,提升编程能力。
算法与数据结构
11
2024-10-26
BP神经网络数据分类:语音特征信号分类
本案例使用BP神经网络进行数据分类,针对语音特征信号进行分类。提供神经网络样本数据和Matlab源代码。
Matlab
16
2024-05-15
Matlab RBF神经网络分类建模
Matlab 的RBF 神经网络在模式分类方面表现挺不错,尤其适合非线性问题。通过RBF网络,你可以方便地进行数据分类,优化模型性能。你可以直接利用 Matlab 的内置函数或者自己动手编写网络结构来实现。试着用它来做一些实际项目,比如语音信号分类、数据拟合等。你会发现,搭建一个基于 RBF 的神经网络其实蛮,效果也挺好。
而且,Matlab 下有不少相关资源,像是RBF 神经网络程序、BP 神经网络分类案例等,这些都能帮你快速入门,避免一些常见的陷阱。如果你想进一步提高技能,还可以了解相关的聚类算法或是其它的神经网络类型。,RBF 神经网络在 Matlab 环境下使用起来还是高效且灵活的。
Matlab
0
2025-06-13