Fisher 的 Iris 数据集常被用作神经网络程序的测试数据集。数据集包含鸢尾花属植物的萼片和花瓣的长度和宽度数据。通过将类用数字标识(0-2),数据变为适合神经网络训练的格式。
Iris 数据集:神经网络分类任务
相关推荐
利用自行构建的卷积神经网络完成CIFAR-10数据集分类任务
我利用自己构建的卷积神经网络成功实现了CIFAR-10数据集的分类任务。
算法与数据结构
7
2024-10-12
使用神经网络解决蘑菇数据集的分类问题-MATLAB代码
利用MATLAB机器学习工具箱,我解决了蘑菇数据集的分类问题。我的解决方案包含在名为“solution.csv”的文件中,其中包含了对给定数据的类别预测。此外,存储库中的“solution_code.m”文件包含了完整的源代码。我采用了深度学习方法,使用具有单个隐藏层的神经网络进行了学习过程。我首先对数据集进行了分析,并剔除了对模型无帮助的属性,如'gill-attachment'中97.64%的值为'f'、'veil-type'中100%的值为'p'以及'veil-colour'中97.73%的值为'w'。随后,我注意到某些属性中特定值在数据集的底部更为集中,而在顶部较少,因此我对其进行了随
Matlab
13
2024-07-23
MATLAB神经网络BP神经网络数据分类与语音特征信号分类案例分析
MATLAB神经网络43个案例分析BP神经网络的数据分类-语音特征信号分类.zip
Matlab
13
2024-09-30
使用BP算法分类Iris数据集的实现教程
数据结构是计算机存储、组织数据的方式,涉及到数据的逻辑结构、物理结构以及对数据的基本操作。数据结构的选择会影响程序的效率、可读性和可维护性。常见的数据结构有数组、链表、栈、队列、树、图等。算法则是解决特定问题的步骤,是对数据运算和操作的详细描述。算法的设计和选择直接影响程序的效率,因此在设计和选择算法时,需要考虑到时间复杂度、空间复杂度等因素。在实际应用中,数据结构和算法常常是密不可分的。通过对数据结构的理解和运用,以及对算法的学习和研究,可以帮助我们更有效地解决实际问题,提升编程能力。
算法与数据结构
11
2024-10-26
BP神经网络数据分类:语音特征信号分类
本案例使用BP神经网络进行数据分类,针对语音特征信号进行分类。提供神经网络样本数据和Matlab源代码。
Matlab
16
2024-05-15
探索Iris数据集的网络数据挖掘实验PPT
研究Iris数据集的详细内容
数据挖掘
12
2024-07-15
iris.rar-常用数据集
这是一个文本格式的经典数据集。可使用记事本或 Excel 打开。
算法与数据结构
11
2024-05-19
使用Matlab进行BP神经网络数据分类
详细介绍了如何使用Matlab实现BP神经网络进行数据分类的方法。提供了具体的代码示例和详细说明,帮助读者快速理解和应用。
Matlab
12
2024-09-27
Iris_SVM_数据集及其应用
鸢尾科植物数据集Iris 支持向量机SVM来自:《数据挖掘中的新方法——支持向量机》附录D xls文件
数据挖掘
9
2024-10-31