多重散点图节点是一种特殊的散点图类型,用于展示单一X字段对多个Y字段的关系。每条Y字段以不同颜色的线条表示,每条线条均代表一个Y模式,并且X轴被设置为排序的散点图节点。这种图表特别适用于时间序列数据,有助于分析变量在不同时间段内的波动状况。
多重散点图节点-数据挖掘基础及SPSS-Clementine实战指南
相关推荐
使用散点图数据挖掘原理与SPSS-Clementine应用宝典
使用散点图来展示数据之间的关系,这种方式挺直观的,尤其是在数据挖掘中,比如你要了解不同变量之间有没有某种关联性。像是你在研究申报值和谷物类型之间的关系时,散点图的效果就,数据点分布得一目了然。图 20-13 就是个好的例子,能清楚地展示变量值和需求之间的联系。比较适合用来快速查看大规模数据中的规律。如果你正在做数据,散点图的运用可以让你避免冗余的计算,快速得出。
数据挖掘
0
2025-07-01
SPSS-Clementine 抽样节点详解
抽样节点
可选择按指定模式(包含或排除)抽取或丢弃记录。
样本:- 连续抽取:从第一条记录开始连续抽取。- n中取1:每 n 条记录抽取或丢弃一条记录。- 随机 %:随机抽取数据集指定百分比的样本。
最大样本量:设定抽取的样本最大数量。
随机数种子:设置随机种子值,用于生成随机数。
数据挖掘
21
2024-05-13
数据挖掘原理与SPSS-Clementine应用指南
5.2.2.1.相关概念t假定给定的样本数据为Y、X,其中因变量样本数据矩阵Y=(y1,y2,…,yn)是p×n样本矩阵,即p个因变量,n个样本;自变量样本数据矩阵X是q×n矩阵,即q个自变量,n个样本。在实际计算时,X一般是将原始数据中心化后得到的样本矩阵,即:X×1n=0。
数据挖掘
10
2024-07-15
数据挖掘原理与SPSS-Clementine应用指南
图21-91展示了线性回归节点汇总页签的详细内容,涵盖了数据挖掘原理与SPSS-Clementine应用的重要节点。
数据挖掘
17
2024-07-16
数据挖掘原理与SPSS-Clementine应用指南
19.2.4统计汇总图19-21展示了一个汇总节点的实例。汇总节点能够将一系列输入记录转换为综合且总结性的输出记录,具体的汇总对话框如图19-21所示。
数据挖掘
17
2024-08-10
数据挖掘原理与SPSS-Clementine应用指南
图19-23展示了如何设置和读取追加节点数据。追加节点通过从同一数据源读取所有记录,并保持数据结构的一致性,直至数据源无更多记录。
数据挖掘
12
2024-10-12
SPSS-Clementine抽样节点应用详解
抽样节点的设置逻辑,蛮适合刚接触 SPSS-Clementine 的朋友。它可以直接控制进入模型的数据量,像是你只想 20%的样本,搞个随机抽样就行,设置一下比例就搞定,操作也不复杂。
抽样节点的对话框界面挺直观,有几个选项你稍微看一下就懂了。支持按比例抽样、固定数量抽样,还能设定是否要保留标签字段,在训练集和测试集划分时好用。
配合数据流使用的时候,比如你前面接了个Select节点筛了一部分数据,再接个抽样节点,控制训练数据的量——嗯,响应也快,流程也清晰。
对了,如果你想搞清楚这个节点更深入的用法,可以顺手看看SPSS-Clementine 抽样节点详解,里面讲得还蛮细的。
抽样用得好,数
数据挖掘
0
2025-06-30
数据挖掘的原理与SPSS-Clementine应用指南
生成异常节点图21-55生成异常节点对话框汇总页签
数据挖掘
7
2024-08-11
数据挖掘规范与标准SPSS-Clementine应用指南
数据挖掘在解决复杂问题时展现了多种模式和算法的能力,具备数据选择、可视化、扩展性和易操作性,同时支持多种数据存取接口。
数据挖掘
13
2024-09-14