大数据实时介绍(图说)使用Spark SQL时必须导入以下依赖包:org.apache.spark:spark-sql_2.10:1.6.1 和 org.apache.spark:spark-hive_2.10:1.6.1 。
大数据实时处理简介Spark入门指南
相关推荐
Flink 在大数据实时处理中的应用
Flink 作为一个高吞吐量、低延迟的流式处理引擎,在大数据实时处理领域得到广泛应用。其基于数据流的计算模型能够有效处理无界数据流,并提供精确一次的语义保证。Flink 支持多种时间语义,包括事件时间、处理时间和摄取时间,使得开发者能够灵活地处理各种实时数据处理场景,例如实时数据分析、实时报表生成、复杂事件处理等。
flink
13
2024-06-08
大数据实时处理技术比较与应用报告
在大数据实时处理领域,Flume、Kafka和Spark Streaming是常用的数据采集、传输与处理工具。本报告详细阐述了如何将这三个组件结合使用,构建一个高效的数据流处理系统。一、Flume与Spark Streaming的结合:Flume是Apache开发的一个分布式、可靠且用于有效收集、聚合和移动大量日志数据的系统。安装配置Flume后,通过测试验证其成功安装。集成Spark Streaming需要将spark-streaming-flume-sink_2.11-2.4.2.jar添加到Flume安装目录的lib文件夹,并设置正确的权限。配置文件中定义SparkSink,并编写Flu
kafka
15
2024-09-14
Pro Spark Streaming实时处理指南
实时的利器,适合你这种想搞明白Spark Streaming怎么玩的开发者。一本书讲透微批的来龙去脉,什么是把实时数据分批搞,怎么做到既快又稳,都说得明明白白。响应也快,代码也好维护,蛮适合做实时日志、告警系统的。讲到RDD和DAG,作者也没绕圈子,直接就用直白的话解释了概念,嗯,挺接地气的。就像老司机带你上高速,一路有方向、有细节,连Kafka、Flume、Socket这些常用数据源接入也讲到了。窗口函数、容错机制这种事,做实时系统的你肯定关心。书里不仅讲了怎么用,还给了不少配置技巧和注意点。比如怎么设置检查点、怎么恢复故障,蛮实用的。它还讲到Spark SQL、MLlib怎么和流结合,嗯,
spark
0
2025-06-13
金融大数据风控建模与实时处理方案
金融大数据的风控模型,说白了就是用数据帮你看清风险,尤其是信贷、信用卡、小贷这些场景,做得好能省掉不少麻烦。这个资源里,整理了不少实用案例,从数据挖掘到评分卡,再到实时监控,讲得都挺细的,拿来当灵感库合适。
信用卡业务的数据挖掘方案比较实在,里面的建模过程、特征工程方法讲得清楚,像逻辑回归、决策树这些算法也都有用上,适合你要快速搭个风控原型时参考。
小贷评分卡那部分蛮接地气,尤其是用户特征维度设计,像活跃天数、设备使用频率这些,都能直接落地用在表单里。代码不复杂,响应也快。
实时风控那篇用的是流式大数据技术,讲了怎么把Kafka + Spark Streaming拼起来,做秒级风控。对接第三方
数据挖掘
0
2025-06-23
Storm组件-实时处理
Storm组件包含以下部分:Topology是storm中运行的一个实时应用程序。Nimbus负责资源分配和任务调度。Supervisor负责接受Nimbus分配的任务,启动和停止属于自己管理的worker进程。Worker运行具体处理组件逻辑的进程。Task是worker中每一个spout/bolt的线程。Spout在一个Topology中产生源数据流的组件。Bolt在一个Topology中接受数据然后执行处理的组件。Tuple是一次消息传递的基本单元。Stream grouping是消息的分组方法。
Storm
14
2024-07-12
实时处理技术综述
将分析实时处理技术在不同章节中的应用,涵盖了课程介绍、实时流处理初步认识、Flume分布式日志收集框架、Kafka分布式发布订阅消息系统等内容,同时探讨了Spark Streaming的入门、核心概念与编程、进阶与案例实战,以及其与Flume和Kafka的整合。
spark
6
2024-09-13
大数据实战指南
本手册涵盖大数据入门基础,包含 Hadoop 环境部署、核心组件 HDFS、MapReduce、流式计算框架 Storm 和数据挖掘相关知识。
Hadoop
18
2024-05-13
Mastering Apache Spark大数据实战宝典
Apache Spark 的进阶宝典《Mastering Apache Spark》还挺值得推荐给搞大数据的你。内容覆盖面广,从基础的Spark Core到实战级的Structured Streaming、MLlib、GraphX都有讲,细节拉满。是机器学习那一块,ML Pipelines搭建工作流挺有意思,像StringIndexer和Tokenizer这种工具用起来贼顺手。书里还讲了模型评估和调优,像CrossValidator、BinaryClassificationEvaluator这些都讲得明白。用 Spark 做流?书里有详细例子,结合Structured Streaming模块,
spark
0
2025-06-15
Redis大数据实践指南
Redis大数据之路PDF文档,由唐福林编著。本指南提供Redis快速入門教程。
Redis
8
2024-04-30