实时推荐系统的设计包括使用flink、hbase、kafka、mysql和redis等技术,通过查询用户的评分和商品信息,结合相似度计算和历史数据分析,实现个性化推荐。系统通过内存加载和数据统计,对热门商品进行排序和推荐。
电商实时推荐系统项目源码和数据集下载
相关推荐
实时电影推荐系统项目源码和数据集
此项目包含实时电影推荐系统项目源码和数据集。
spark
12
2024-05-01
Spark 电商推荐系统源码
该资源提供了一套基于 Spark 框架构建的电商推荐系统源码,可用于学习和实践个性化推荐算法。
spark
22
2024-05-28
Spark电商推荐系统
基于 Spark 的推荐系统项目,还挺实用的,适合搞大数据或者电商方向的朋友。项目用了ALS做协同过滤,逻辑清晰,代码也不绕。配合MLlib、DataFrame API这些常用组件,流程还挺顺。前面有数据清洗,后面模型训练,走得蛮全的,像评论文本也了,细节做得还不错。
Spark 的分布式能力用起来蛮香,像Spark Streaming也有涉及,能搞在线推荐那种。你要是数据量大、用户多,这项目的结构你可以直接套。推荐算法方面除了ALS,也提到了Neural Collaborative Filtering(NCF),适合想引点深度学习思路进去的。
模型评估这块也没落下,用了Precision@K
spark
0
2025-06-14
Ciao推荐系统数据集
来自 Ciao 购物平台的,是个在推荐系统圈子里蛮有名的老牌数据集了。它最大的亮点是评论内容丰富,除了评分,还能看到用户怎么说商品。像要做<协同过滤>或者<情感>的项目,这个数据集挺合适的。评分、评论、商品类别啥的全都整理得比较清楚,用户的<年龄>、<性别>这些也有,做用户画像会省不少事。而且评论时间也有,想做时间序列推荐的朋友也能用上。如果你在搞<内容推荐>或者<混合推荐>,里面的文本数据和商品分类信息就有用,稍微一下就能上模型了。哦对,数据体量也不算小,用来测算法稳定性也靠谱。整体来说就是个比较全能的推荐研究练手包。要注意的是,评论有些地方是德语或其他语
算法与数据结构
0
2025-06-16
Douban推荐系统训练数据集
豆瓣用户的评论数据,886026 条,数量还挺可观的,做推荐系统训练集合适。user、item、rating、type四个字段,分别是用户名、电影或书名、评分、类型。文件是csv格式,utf-8编码,读取也方便,丢进pandas里一行代码就搞定。
豆瓣的数据还不错,内容丰富,评分也比较真实。你想做协同过滤、矩阵分解这类算法,用这份数据挺合适的。不比 MovieLens 差多少,而且多了type这个字段,拿来做多模态推荐、分类推荐也能用上。
另外你要是想拓展下思路,也可以看看下面这几个数据集:MovieLens 的更经典一点,点这里就能下;还有像 新闻推荐、电商评论 这些也蛮值得一试的。
,al
算法与数据结构
0
2025-06-14
阿里之江杯电商评论数据挖掘数据集.zip
阿里之江杯电商评论数据挖掘数据集提供了丰富的电商评论信息,可用于数据挖掘和分析。
算法与数据结构
10
2024-08-25
电商日志项目深度解析
本项目针对电商平台日志数据展开分析,涵盖从Web资源分析、日志获取到数据处理的全流程。通过对海量日志数据的深度挖掘,揭示用户行为模式,为电商平台运营决策提供数据支持。
Hadoop
19
2024-05-14
优化电商平台系统
电子商务系统是一个涵盖商品展示、用户注册、购物车管理、订单处理和支付结算等多方面功能的复杂应用程序。每个环节都依赖于广泛的IT知识,包括前端开发(HTML、CSS、JavaScript,React、Vue、Angular等框架)、后端开发(Java、Python、Node.js,Spring Boot、Django、Flask等)、数据库设计(MySQL、PostgreSQL、MongoDB)、安全性(HTTPS加密、哈希算法存储密码、防止SQL注入和XSS攻击)、购物车功能(实时更新商品数量与价格)、支付集成(第三方支付平台如支付宝、微信支付)、订单处理(库存检查、物流跟踪、实时状态更新)以
SQLServer
12
2024-08-17
Flink实时亿级电商全端用户画像系统
基于Flink流处理的电商全端用户画像系统
分享实时亿级电商用户画像系统实践经验
flink
23
2024-04-29