分析了传统DDoS攻击检测方法的局限性,并提出了基于网络流量分形特性的两种新型异常检测方法。通过对网络流量的分形参数Hurst和Holder及其时变函数进行深入分析,研究了网络流量异常的自相似性和多重分形性变化。研究结果表明,这种基于统计分析的新方法能够有效检测和防范DDoS攻击。
基于网络流量分形特性的DDoS攻击检测新方法研究(2009年)
相关推荐
基于Hadoop的网络流量分析系统研究与应用
根据实际离线流量分析特点,利用云计算技术设计基于Hadoop的离线流量分析系统,解决海量流量数据的存储和分析难题。2. 为提高系统可用性,设计了分布式集群的管理、监控、告警和优化系统,确保系统稳定高效运行。3. 提出了一种在云计算环境下预测作业运行时间与资源消耗的模型,优化资源利用效率。4. 使用真实海量移动互联网用户数据,深入分析移动互联网流量与用户特性,揭示多维度的用户行为特征。5. 从复杂网络角度构建移动互联网网络结构,研究其复杂网络特性。探讨了利用Hadoop构建网络流量分析系统的方法与实践,应对大数据时代下的挑战。
Hadoop
9
2024-07-16
NTP反射攻击DDoS追踪研究
利用NTP反射放大攻击的特点,对开放公共NTP服务的中国大陆主机发起主动探测,获取返回信息,用于追踪分析全球范围NTP反射类DRDoS攻击事件。从2014年2月开始,观测周期164天,每2小时探测大陆近1.4万台NTP服务主机,记录了数十万个疑似DDoS攻击目标IP地址。
统计分析
10
2024-04-30
基于ARM与CMOS技术的地下管线检测新方法研究
利用四核ARM S5P4418芯片与CMOS图像传感器OV7725相结合,开发了一种新的地下管线检测系统。该系统通过摄像机捕获激光光斑在成像屏坐标的变化来定位地下管线的位置与弯曲变化。研究采用matlab calibration toolbox对摄像机进行精确标定与矫正,标定误差控制在0.16像素内。此外,还对图像进行了灰度转换、中值滤波与阈值分割预处理,并应用灰度重心法准确获取激光光斑的中心位置信息。这一简单有效的方法显著降低了工作量与检测成本。
Matlab
10
2024-09-27
利用Hadoop分析网络流量数据
在大数据处理领域,Hadoop是一个不可或缺的开源框架,被广泛用于存储和处理海量数据。本教程将专注于如何利用Hadoop对网络流量数据进行统计分析,这对理解网络行为、优化网络服务和制定数据驱动的决策至关重要。我们将深入研究Hadoop的核心组件:HDFS和MapReduce。HDFS作为分布式文件系统,将大文件分割成多个块,并在集群中的不同节点上存储这些块,以实现高可用性和容错性。MapReduce则是处理这些数据的计算模型,包括Map和Reduce两个主要阶段。在\"HTTP_.dat\"文件中,我们假设它包含了通过HTTP协议产生的各种网络活动记录,如URL访问、请求时间和响应状态码等。这
Hadoop
9
2024-09-14
基于改进DRNN网络的决策树构建新方法
决策树作为数据挖掘和归纳学习的关键方法之一,其构建效率一直备受关注。传统的ID3算法虽然应用广泛,但存在偏向取值较多属性的缺陷,影响了决策树的泛化能力。为了克服这一问题,该研究引入深度循环神经网络 (DRNN) 的强大学习能力,提出一种基于改进DRNN网络的决策树构建方法。该方法利用DRNN网络对数据进行深度表征学习,提取更具判别性的特征,从而优化决策树的节点分裂过程,最终构建出结构更合理、分类性能更优的决策树模型。
数据挖掘
13
2024-05-27
研究报告领域本体构建的新方法
为了解决文本数据挖掘等尚未成熟的领域中本体构建的挑战,我们首先创建了领域本体的基本概念词集。利用样本库优化这些基本概念,并构建它们的上下文关系,筛选出相关的名词,并且设计了一种算法来确认同义词、近义词和反义词。这一方法已经被证实在实践中具有可行性。
数据挖掘
11
2024-08-15
异常数据检测方法综述(2009年)
研究了数据挖掘中异常点检测的通用方法,并分析了它们的优缺点。还探讨了在高维和基于聚类的异常点挖掘中的应用情况,希望为进一步改进提供基础。
数据挖掘
12
2024-07-16
基于粗糙集属性约简的图像隐藏信息检测新方法(2008)
统计分析方法是图像隐藏信息检测中常用的手段,相较于特定隐写分析,其更为灵活,能够快速适应新的或未知的隐写算法。为解决高维特征属性问题,采用粗糙集属性约简技术,有效降低数据规模。实验结果显示,该方法在不影响分类精度的情况下显著提升了检测速度。
统计分析
17
2024-08-30
基于人工蜂群算法优化BP神经网络训练的新方法
人工蜂群算法与BP神经网络结合,提供了一种新的优化策略,解决BP神经网络在训练中遇到的局部最小值问题。BP神经网络作为监督学习模型,通过反向传播误差来更新权重,以减少预测输出与实际输出之间的差距。然而,其依赖梯度下降可能导致训练速度缓慢且易于停滞。相比之下,人工蜂群算法模拟蜜蜂的智能行为,通过全局优化算法能够更有效地搜索解决方案空间,找到全局最优解。在BP神经网络中应用人工蜂群算法可以替代传统梯度下降法,优化网络的权值和阈值,从而提高网络的泛化能力和训练效率。
算法与数据结构
17
2024-07-17