初学者可使用此 SPSS 案例和数据集,快速掌握基本操作,提升 SPSS 熟练度。
SPSS 入门必备:案例和数据集
相关推荐
SparkSQL经典案例数据集
影视评分:分析电影评分、评论和用户行为
电商交易:聚合订单信息、商品信息和用户行为
社交网络:探索用户互动、内容传播和网络结构
金融数据:处理股票交易、基金收益和市场趋势
物联网数据:分析传感器数据、设备状态和异常检测
spark
13
2024-04-30
实时电影推荐系统项目源码和数据集
此项目包含实时电影推荐系统项目源码和数据集。
spark
12
2024-05-01
MovieLens 数据集:推荐算法必备资源
超过 500M 的 MovieLens 数据集,为推荐算法研究和实践提供了丰富的数据支持,涵盖电影评分、用户属性等多个维度。
数据集包含六个文件,适用于不同规模的算法训练和测试,是推荐系统领域不可或缺的重要资源。
数据挖掘
18
2024-04-30
AB测试数据集案例详解
AB测试数据集案例详解
数据挖掘
16
2024-07-31
时间序列数据建模案例数据集
该数据集包含用于时间序列数据建模的案例数据。
统计分析
14
2024-05-29
KMeans聚类分析案例_顾客数据集
KMeans聚类分析案例——顾客数据集
导入数据集:加载顾客数据集,对数据进行预处理,清洗缺失值和异常值。
特征选择:根据业务需求选择与顾客行为相关的特征,如年龄、收入、购买频率等。
标准化处理:使用标准化方法处理特征,确保数据尺度一致。
选择K值:通过肘部法则或轮廓系数确定最佳的聚类数K。
聚类建模:应用KMeans算法进行聚类,得到不同类型的顾客群体。
聚类分析:分析每个聚类的特征,帮助企业制定个性化营销策略。
可视化展示:使用降维技术如PCA进行可视化,方便观察不同顾客群体的分布情况。
数据挖掘
14
2024-11-07
电商实时推荐系统项目源码和数据集下载
实时推荐系统的设计包括使用flink、hbase、kafka、mysql和redis等技术,通过查询用户的评分和商品信息,结合相似度计算和历史数据分析,实现个性化推荐。系统通过内存加载和数据统计,对热门商品进行排序和推荐。
flink
13
2024-09-13
Python编程和数据分析Fisher鸢尾花数据集探索
项目模块“编程和脚本编制”中,使用Python编程语言分析Fisher鸢尾花数据集的科学高级文凭项目要求学生。数据集已被广泛研究,学生需要通过编写Python代码和文档来汇总数据集,包括计算每列的最大值、最小值和平均值。项目帮助学生将大任务分解成小任务,最终完成综合报告。
Matlab
7
2024-09-01
浏览和修改SAS数据集 - 入门操作指南
浏览和修改SAS数据集需要使用ViewTable进行浏览、编辑,并使用Proc Print来输出。在SAS系统中,操作前需设定好SAS数据库,确保数据集存储在正确的数据库中。
Hadoop
17
2024-07-14