- Driver作为客户端,Executor作为服务器
- 1个Task任务类,1个SubTask分布式任务类
- 2个Executor启动后连接Driver,分配任务资源
Spark分布式计算模拟代码
相关推荐
Spark分布式计算框架
Spark是一种高效的开源集群计算系统,专为大规模数据处理而设计。它提供了一个快速灵活的引擎,用于处理批处理、交互式查询、机器学习和流式计算等多种工作负载。
Spark核心特性:
速度: Spark基于内存计算模型,相比传统的基于磁盘的计算引擎(如Hadoop MapReduce),速度提升可达100倍。
易用性: Spark提供简洁易用的API,支持多种编程语言,包括Scala、Java、Python和R。
通用性: Spark支持批处理、交互式查询、机器学习和流式计算等多种工作负载,提供了一个统一的平台来处理各种大数据需求。
可扩展性: Spark可以在数千个节点的集群上运行,能够处理P
spark
11
2024-06-22
Spark 分布式计算框架指南
本指南涵盖 Apache Spark 核心模块、SQL 处理、流式计算、图计算以及性能调优与内核解析等方面。内容面向希望学习和应用 Spark 进行大数据处理的用户,提供从入门到实战的全面指导。
主要内容包括:
Spark 核心概念与编程模型: 介绍 Spark 的基本架构、RDD、算子以及常用 API。
Spark SQL 数据处理: 讲解 Spark SQL 的数据抽象、查询优化以及与 Hive 的集成。
Spark Streaming 实时流处理: 探讨 Spark Streaming 的架构、DStream API 以及状态管理。
Spark GraphX 图计算: 介绍 Spa
spark
9
2024-05-29
Apache Spark分布式计算框架
大数据的老朋友里,Apache Spark真的蛮有存在感的。用 Java、Scala、Python 都能整,跑批速度比老 MapReduce 快不少,响应也快,调试也没那么闹心。适合你分布式数据、实时流式啥的。
来自伯克利 AMP 实验室的产物,Spark 一开始就是冲着 MapReduce 那点低效率来的。核心组件像Spark SQL、Spark Streaming都挺实用,写数据逻辑还挺顺手的。写个map、filter,几行代码搞定一个复杂任务。
另外它跟 Hadoop 生态融合得还不错,HDFS、Hive都能搭,老项目迁移成本也不高。部署的话,YARN、Kubernetes都支持,弹性伸
spark
0
2025-06-15
Apache Spark分布式计算资源包
Spark 的大规模数据能力挺让人放心的,尤其是在做机器学习那类需要反复迭代的任务上,效率比传统的 MapReduce 要高。你要是搞过大数据那一套,应该知道中间结果频繁写 HDFS 有多烦,Spark 就省了这一步,直接内存里搞定,响应也快,体验还不错。
Apache Spark 的并行能力蛮强的,适合搞点分布式计算的活儿。像你在跑个大数据算法、建个机器学习模型,Spark 都能帮上忙。而且它不止能跑批,流、图计算也行,通用性还挺高。
资源包叫BaiduNetdiskDownload.zip,里面有不少实用的资料,包括案例数据、分布式框架,还有个.xmind思维导图,方便你理清知识脉络。懒得
spark
0
2025-06-16
Apache Spark分布式计算框架剖析
Apache Spark 的源码文章,结构清晰、内容扎实,挺适合对分布式计算有兴趣的你深入学习一下。文章从 Spark 的整体架构讲起,聊到了核心组件和关键机制,比如RDD、DAGScheduler、TaskScheduler、Executor这些,讲得还挺透。Spark Core 的调度机制比较复杂,但源码部分讲得还算容易理解,尤其是任务怎么拆分、怎么调度这块。像DAGScheduler负责把任务拆成TaskSet,交给TaskScheduler发到各个Executor上跑,文章里也有。Spark SQL和Streaming的源码剖析也蛮实用。比如DStream怎么转成RDD、结构化查询怎么
spark
0
2025-06-15
Spark分布式计算框架系统精讲
本课程涵盖Scala编程基础、Spark核心编程、Spark内核源码解析以及Spark性能优化和Spark SQL等方面,帮助学员全面掌握Spark分布式计算框架。
课程大纲:
Scala编程基础: 深入讲解Scala语言特性,为学习Spark打下坚实基础。
Spark核心编程: 详解Spark核心组件,例如RDD、Transformation和Action,并结合实际案例进行讲解。
Spark内核源码深度剖析: 剖析Spark内核源码,帮助学员深入理解Spark运行机制。
Spark性能优化: 讲解Spark性能优化技巧,帮助学员提升Spark应用程序的执行效率。
Spark SQL
spark
12
2024-07-01
Spark Core分布式计算入门资料
分布式计算的入门利器,Spark Core的学习资料还挺丰富的,尤其适合你这种想自己摸索的开发者。资源整理得比较齐全,涵盖从搭环境到跑任务。嗯,自己搭个小集群练练手,理解就更深了。
Apache Spark的架构其实不难,最核心的就是RDD这个东西,理解了它,数据怎么流转就一清二楚。你可以去看看这个版本:Spark-2.0.2-bin-hadoop2.6,兼容性还不错,跑在本地也没问题。
顺手推荐一个和 Spark 搭配比较多的老伙计——Hadoop。如果你还没搞过,可以试试这个:构建大数据 hadoop 分布式集群。配置稍微复杂点,但动手一次就熟了,Spark 任务调度也更顺畅。
啦,想进一
spark
0
2025-06-13
Apache Spark 3.4.3分布式计算引擎
内存计算的 Spark 引擎,大数据是真的快。用的是Scala写的,操作分布式数据集就像本地集合那样简单直观。相比Hadoop MapReduce,它支持数据保存在内存中,省去反复读写磁盘的烦恼,跑迭代算法(比如机器学习)合适。对于做分布式计算的你来说,Spark 算是比较成熟的方案了。不只是性能好,生态也挺全,支持SQL 查询、图计算、流式,你想要的场景基本都能覆盖。安装包是spark-3.4.3-bin-hadoop3.tgz,打包好了的,拿来就能用。你用./bin/spark-shell一跑,立刻进 REPL 环境,测试点数据分分钟出结果。注意哦,虽然 Spark 自带了本地模式,但如果
spark
0
2025-06-16
MapReduce分布式计算模型
Google 的 MapReduce 论文,真的是做分布式计算绕不过去的一篇。Map 和 Reduce 的思想来自函数式编程,理念其实不复杂:Map 负责拆小块分给节点跑,Reduce 再把结果合起来,完活儿。逻辑挺清晰的,适合大批量数据,像日志、网页索引这些场景就适合。
MapReduce 的模型结构也还挺直观:输入输出都是键值对,Map函数拿到输入先搞出一堆中间结果,交给系统自动Shuffle和Sort,再扔给Reduce函数做最终汇总。嗯,不用你操太多心,系统自动兜底。
架构设计上也成熟:JobTracker负责分配任务,TaskTracker各自干活儿,底层的数据都扔进HDFS,又稳又
算法与数据结构
0
2025-07-05