这份Matlab源码涵盖了如何利用模拟退火算法和遗传算法联合解决旅行商问题(TSP)。通过结合两种算法,可以有效提高解决TSP的效率和准确度。
【旅行商问题】利用Matlab实现模拟退火与遗传算法相结合求解TSP
相关推荐
模拟退火算法与改进遗传算法求解旅行商问题及Matlab实现
本资源探讨利用模拟退火算法和改进的遗传算法解决旅行商问题,并提供在Matlab环境下的实现方法。
Matlab
13
2024-05-12
模拟退火算法优化旅行商问题
旅行商问题是一个经典的优化挑战,在实际应用中,模拟退火算法显示出了有效解决这一问题的潜力。通过模拟退火的非确定性搜索和全局优化能力,可以显著提高解决方案的质量和效率。
算法与数据结构
14
2024-07-13
模拟退火解决旅行商问题TSP路径优化MATLAB实现
模拟退火的 TSP 路径优化,用 MATLAB 搞挺方便的。主程序zhixing.m里逻辑清晰,注释也比较到位,适合直接跑,也适合拿来改。核心就是初始化路径、算距离、换位置,套一套接受概率和降温策略。你要是刚开始学模拟退火,或者想快速实现个 TSP 优化,这份代码还挺合适的。
Matlab
0
2025-07-01
遗传算法旅行商问题求解
遗传算法的旅行商问题实现,写得还挺清晰的,思路也蛮完整。用 Matlab 搞过 TSP 的朋友应该知道,城市一多起来,手动排路径基本不,这种进化式思路就挺合适了。代码里从初始化种群到交叉、变异、适应度评估都有,而且注释也算良心,看着不累。
路径编码用的是蛮直观的城市序列,比如[1, 5, 3, 2, 4, 1],代表从 1 出发,按这个顺序转一圈再回来。你要是第一次玩遗传算法,也不用慌,结构清晰、模块划分也明白:初始种群、交叉、变异都在自己的函数里。
适应度函数设计得也靠谱,反比于路径长度,这样距离越短适应度越高。轮盘赌和锦标赛两种选择机制也都兼顾到了,可以按需切换,挺灵活的。交叉操作用了部分
算法与数据结构
0
2025-06-30
MATLAB实现遗传算法与模拟退火算法解决TSP问题
旅行商问题(TSP)是一个经典的组合优化挑战,要求找到一条最短路径,使得旅行商能够访问所有城市并返回起点城市。遗传算法和模拟退火算法是解决此类问题的常见启发式方法。遗传算法(Genetic Algorithm)求解TSP的过程包括:1. 种群初始化: 随机生成一组初始路径,每个路径表示一种旅行商的巡回路线。2. 适应度评估: 将每条路径的总长度作为其适应度,目标是最小化总长度。3. 选择: 使用轮盘赌选择法等策略从当前种群中选出适应度较高的个体,使其更有可能遗传到下一代。4. 交叉: 对选中的个体执行交叉操作生成新的个体,常见的方法包括交叉点交叉(OX1)和部分匹配交叉(PMX)。5. 变异:
算法与数据结构
14
2024-07-13
基于遗传算法的旅行商问题求解
该项目利用遗传算法解决旅行商问题,目标是在给定的30个城市(经纬度已提供)中找到最短路径。用户可以自定义调整重组概率、变异概率以及迭代次数,以优化算法性能。
算法与数据结构
18
2024-05-12
【旅行商问题】使用遗传算法解决TSP问题matlab源码.zip
【旅行商问题】使用遗传算法解决TSP问题matlab源码.zip
Matlab
14
2024-09-30
遗传算法解决多旅行商问题MATLAB实现
遗传算法多旅行商问题的 MATLAB 程序挺实用的,尤其适合需要在多个旅行商之间做路径优化的场景。程序分为五种情况,像从不同起点出发回到起点或不回到起点,旅行商数量可变,适应各种需求。对于有一定 MATLAB 基础的朋友来说,这段代码挺,可以直接上手。需要优化 TSP 问题,或者你正好要做类似的路径规划,试试这段代码,效果还不错哦!
不仅如此,相关的参考资料也蛮丰富的,包括不同的算法实现方式,比如蚁群算法、模拟退火等,给你多种优化思路。如果你想了解更深层次的实现细节或想拓展自己的算法库,可以参考一下相关链接,挺有的。毕竟,在优化问题的上,方法多样,选择适合的才最重要。
Matlab
0
2025-07-03
旅行商问题的遗传算法优化及其Matlab实现
Matlab编程实现了旅行商问题的优化解决方案,采用遗传算法进行效率提升。该方法通过遗传算法迭代优化旅行路径,以求得最优解。
Matlab
17
2024-09-28