- 建立矫正行动管理制度
- 定义制程系统
- 决定控制特性
- 顾客需求
- 问题区域及相互关系
导入计量型控制图前的准备事项
相关推荐
计数型控制图SPC过程能力分析
计数型控制图的 SPC 过程能力用起来还挺方便的,尤其是做质量监控那块。Pn 图、P 图、C 图、U 图这几种图型,各有侧重,统计方式也不一样。比如P 图主要看不良率,适合批量检测;而C 图则偏向统计单件产品的缺陷数,更适合产品的内在问题。做得细,才更准。界限计算那块也不用太担心,网上资源挺多的,像MATLAB和SAS都有现成的教程支持。如果你是用MATLAB画图的,还可以看看那个离散图学习资源,讲得比较清楚,省事不少。另外,还有不少扩展内容,比如Redis相关的思维导图,还有一些图形选择和布局的教程,也能在项目展示阶段派上用场。像是数据的时候,图清晰才更有说服力,对吧?如果你正好做质量统计,
统计分析
0
2025-06-16
管理信息实验上机前准备清单
上机前的准备清单挺实用的,尤其是做信息管理类课程设计的你,最好提前把E-R 图和系统功能框架捋一遍。像第 2、第 3 项里建议选第 3,嗯,系统功能框架写清楚了,你后面写流程图和 E-R 图会省不少事。
系统业务流程图也别忽视,配合数据字典,基本可以撑起你的设计大纲。建议你先把模块划分列清楚,再套流程,逻辑更顺。说实话,这些内容不是难,但不提前搞定,等上机就容易乱。
我蛮推荐你参考一些现成的E-R 图和数据字典模板,自己画的时候心里才有底。像Oracle 课程设计那个,就比较系统。还有像RBAC 权限管理的图,结构清晰,适合做权限模块参考。
选课系统、招聘系统这种案例也不错,像学生选课 E-R
Access
0
2025-06-15
用控制图监控过程
用控制图监控过程
控制图通过定期抽样和打点,用于日常质量管理和工艺改进,帮助识别异常波动,及时采取措施,将工艺标准维持在预期水平。
步骤:
定期从过程中抽取样本数据。
将数据绘制在控制图上。
观察数据点,判断是否存在异常模式,例如超出控制限或出现非随机趋势。
如果发现异常,则需要查明原因并调整工艺流程。
持续监控过程,确保其处于受控状态。
统计分析
10
2024-05-25
SPC过程统计分析在计数型控制图与管理系统中的应用
计数型控制图与管理系统密切相关,因此在引入SPC过程统计分析之前,需要做好多项准备工作。例如,明确定义计件和计点统计量,确保一致性;制定清晰的不良或缺陷编码,以便操作员记录;量化品质目标,制定适用于过程系统的标准;设计能与品质绩效奖金挂钩的不良率与良率定义;并公平比较不同机种或制程的不良率与良率。
统计分析
13
2024-07-23
R 控制图:统计过程控制利器
R 控制图是统计过程控制 (SPC) 中常用的工具,用于监控过程的变异并识别异常情况。
R 控制图的优势:
监控过程变异
及时发现异常
数据可视化
辅助决策
算法与数据结构
20
2024-05-23
单边控制图SPC过程能力分析
如果你在做统计过程控制(SPC)时,会遇到一些比较具体的挑战,比如说,如何单边控制图的情况下计算 Cp 和 Cpk?嗯,这其实是一个常见的问题,但答案也不复杂。单边控制图其实就是指只能监控一个方向的变动,比如只关心上限或下限的超标。计算 Cp 和 Cpk 时,你得重点关注那个有实际限制的方向。例如,当只有上限时,Cp 和 Cpk 的计算就会侧重于如何控制过程变动以避免超标,而不再是对称的上下控制区间。这个可以通过几个工具来完成,其中有些工具了相当便捷的计算方式。你可以参考一下几个相关的资源,它们会你更好地理解和应用这些控制图的计算方法。
统计分析
0
2025-06-13
优化数据库安装前的关键包扫描注意事项
在准备安装gcc-C++-3.4.6-3.1.x86_64.rpm之前,务必仔细扫描数据库中的重要包,以避免安装过程中的任何影响。
Oracle
11
2024-07-28
控制图判读方法详解-统计过程控制SPC
控制图的判读方法整理得挺到位的,尤其适合做质量的你快速上手 SPC 里的关键规则。像连续 7 点在同一侧、连续 11 点有 10 点偏离这种判断条件,平时手动看真挺容易漏。它还列出了不同情况的点数要求,看着清晰,省得你去翻书查标准了。判读规则 6 和 7 也讲得蛮细,尤其是判断点子靠近2σ界限时是不是出问题,给了 3 种点数组合,实用。你要是用Excel画控制图或者搞MATLAB仿真,那些判断规则直接套进去就行,逻辑容易转成代码逻辑。而且文章后面还贴了几个相关链接,比如怎么做CPK 计算、怎么选控制图类型、R 语言控制图用法啥的,扩展阅读挺方便。你要真做质量管控或 SPC 项目,建议这些链接一
算法与数据结构
0
2025-06-15
控制图种类与选择指南-统计过程控制SPC
控制图的种类和选择控制图的选定主要考虑以下因素:1. 资料性质- 不良数或缺陷数2. 单位大小- 是否一定“n”- 是否一定样本大小:n≧23. Cl的性质- “n”是否较大4. 各种控制图:- c图- u图- np图- p图- X-R图- X-s图5. 计数值与计量值:- “n”=1- n≧1 中位数、平均值- “n”=2~5缺陷数不一定- “n”=10~25一定
根据不同情况选择适当的控制图是实现统计过程控制的关键。
算法与数据结构
11
2024-11-02