2018年[WAFR 2018,共同第一作者],我成功地将信号时态逻辑(STL)与Hamilton-Jacobi可达性(HJ-Reachability)相结合,以提高机器人的安全性和时变目标实现能力。在攻读硕士学位期间,我专注于此项目的研发,并在2018年机器人技术基础研讨会上发表。最近,我开发了一个更为平稳稳定的MPC控制器,取代了传统的bang-bang控制器。想了解更多关于新旧控制器性能对比的信息,请访问{链接}。在AA203最佳控制入门课程中,我应用非线性轨迹优化技术,成功启动了斯堪的纳维亚轻型动力系统的非线性轨迹模型。
Matlab集成C代码-投资组合更新
相关推荐
跨境投资组合管理利器
由于工作原因,我的投资账户分散在不同国家和经纪商,涉及多种货币(GBP、SGD、HKD)。向雇主合规部门报告个人账户交易一直是手动操作,非常耗时。我也无法清晰了解整体投资组合的绩效和构成,从而做出明智的投资决策。
为此,我自主开发了投资组合分析工具,整合我在各个国家和经纪人之间的所有交易。该工具通过 API 连接 Yahoo Finance 获取市场数据,帮助我有效管理跨境投资组合。
NoSQL
16
2024-05-12
MATLAB集成C++代码
Metaphor是一个功能强大的C++库,适用于数值计算、机器学习和计算机视觉。该库的核心模块提供了线代、数值计算和非线性优化工具。其他模块正在积极开发,未来可能添加至仓库中。
Metaphor核模块提供大量线代和统计工具,并基于灵活的矩阵和向量对象构建。功能包括:
轻量级通用矩阵和向量视图类:视图对象可引用现有数据的任意行和列跨度,支持任何数据类型。
多种数据操作,如子视图复制、重新排序和抽取。
矩阵和向量可保存和打印为多种格式,包括MATLAB文本格式。
浮点、双精度和复数类型的线代运算:一整套经过优化的标准BLAS操作,支持BLAS 1、2和3。
低级优化矩阵块数学函数可用于矢量和矩阵
Matlab
16
2024-05-20
ScalaLab更新Matlab集成C代码的全新解决方案
ScalaLab项目为Java虚拟机提供高效的科学编程环境。其脚本语言基于Scala编程语言,增强了高级科学运算符,并提供了类似于Matlab的集成环境。此外,所有Java科学代码库都可以轻松访问(往往具有更方便的语法)。该项目的主要潜力在于为Scala 2.13用户提供简单而高效的科学计算解决方案。
Matlab
10
2024-07-30
计算投资组合欧米伽
该项目提供了计算投资组合欧米伽值的 Matlab 函数。
Matlab
17
2024-05-12
Matlab集成C代码的优化策略
在Matlab环境下整合C代码是一项挑战性工作,需要精心设计和优化。将C代码与Matlab无缝结合,可以显著提升计算效率和灵活性。
Matlab
12
2024-08-23
利用股票指数简化投资组合模型
本节介绍利用股票指数对投资组合模型进行简化的方法。通过线性回归,可以找出股票收益与股票指数之间的线性关系。根据该线性关系,可将股票收益表示为股票指数的线性函数。该方法可以避免协方差矩阵的计算,从而简化模型。
算法与数据结构
17
2024-05-15
投资组合优化:基于 MATLAB 的参数灵敏度分析
在投资决策中,了解风险与预期回报之间的关系至关重要。通过调整预期回报率目标,并观察投资组合风险(回报率方差)的变化,投资者可以做出更明智的决策。
本案例利用 MATLAB 软件对投资组合优化模型进行参数灵敏度分析。通过设置回报率目标值在 0.09 到 0.234 之间变化,步长为 0.002,我们可以绘制出风险随预期回报变化的曲线。
具体步骤如下:1. 加载模型数据,包括股票预期回报率和协方差矩阵。2. 初始化参数,例如回报率目标起始值和步长。3. 使用循环结构,逐步增加回报率目标值。4. 在每次循环中,求解投资组合优化问题,得到最优投资比例和对应的风险。5. 将结果保存,并绘制风险-回报曲线
算法与数据结构
17
2024-05-24
Matlab集成C代码在FPGA应用指南
本指南详细介绍了如何在FPGA(现场可编程门阵列)设备上集成Matlab编写的C代码,涵盖了PolarFire:registered:、Artix 7、Spartan 6和Zynq-7000等常见型号。通过使用本指南提供的工具、应用程序和库,开发者能够更高效地利用FPGA器件,同时了解到FPGA可以实现的出色项目。此外,本指南还介绍了如何利用便捷的扩展程序将Markdown文件转换为PDF,以及在LabVIEW中进行FPGA设计的测试方法。
Matlab
11
2024-07-14
Matlab集成C代码PulseqDiffusion脉冲扩散
Matlab集成的C代码PulseqDiffusion:利用开源PyPulseq进行扩展的加权回波平面成像序列扩散加权成像(DWI)在多种临床应用中具有重要意义,如中风和肿瘤特征表征。尽管有多种与供应商无关的后处理工具可供选择,但出于研究目的,目前尚未提供开放源代码的实施。我们推出了PulseqDiffusion,这是一个跨厂商、多切片单次激发自旋回波回波平面成像(EPI)的开发工具,使用基于扩散脉冲序列的开源包PyPulseq。该工具可以扩展以支持多种b值和方向。我们在以下两个方面进行了验证:(i)在体外模型中测量表观扩散系数,(ii)在人体内脑数据中获得高质量的分数各向异性(FA)和平均扩
Matlab
9
2024-08-22