这个Matlab程序能有效消除光纤陀螺仪中的角振动噪声。
灰色前向线性预测算法的应用
相关推荐
多层前向神经网络预测方法在数学建模中的应用
构造多层前向神经网络的预测方法,挺适合数学建模用的,是你想拿 BP 网络在 MATLAB 里练练手的时候。这套代码思路清晰,结构也不复杂:输入层、隐层、输出层走一遍,快就能跑出结果。
BP 神经网络的核心逻辑其实不难,关键是你要理解每一层怎么传值怎么反向传播。这套实现方式在 数学建模 里用得比较多,尤其是那种预测类的问题,比如交通流量预测、销售预测啥的。
代码写得还挺规整,函数划分清楚,变量命名也好懂。你只要稍微熟一点 MATLAB 的基本语法,比如feedforwardnet、train这些常用函数,基本就能顺着跑通。
我建议你配合下面几个资源一起看,效果更好:
BP 神经网络详解神经
算法与数据结构
0
2025-06-18
股市预测算法比较及其应用探索
股市预测是一种预测股票未来价格的方法,随着技术的进步,包括机器学习在内的各种算法正在成为研究和投资者关注的焦点。本项目探索了多种数据挖掘算法如线性回归、Arima、LSTM、随机森林和支持向量回归在NSE股票市场的应用。通过比较预测精度,评估了不同模型的效果,并应用了预处理方法提高了预测准确度。数据集来源包括印度股票市场,涵盖了多元化的行业特征。
数据挖掘
15
2024-07-17
图分析中的链接预测算法
链接预测算法用于预测图中不存在的或可能存在的边。
Adamic-Adar算法:基于节点的共同邻居,亲密度公式为 N(u)是与节点u相邻的节点集
CommonNeighbors:基于共同邻居的个数
PreferentialAttachment:基于节点的度
数据挖掘
14
2024-05-27
基于MATLAB的灰色预测建模与应用
灰色预测,基于灰色系统理论,适用于数据量少、难以构建精确模型的场景。其核心是将数据进行灰色处理,区分已知和未知信息,并利用已知信息进行预测。
主要步骤:
灰色模型的选择:根据实际问题选择合适的模型,如GM(1,1)、GM(2,1)等。
原始数据序列的构建: 将原始数据构建为矩阵形式,并进行预处理。
GM(1,1)模型构建: 假设原始数据序列可通过一次累加得到发展规律,并进行模拟。
灰色模型参数求解: 利用已有数据,通过数学方法求解灰色模型参数。
模型检验: 检验模型的拟合效果。
模型预测: 使用建立的模型进行未来数据预测。
结果评估: 对预测结果进行评估,检验预测精度。
通过MATLAB,
数据挖掘
16
2024-05-25
基于线性权重递减PSO优化SVM的电力负荷预测算法MATLAB实现
基于线性权重递减 PSO 优化 SVM的电力负荷预测算法,是个适合电力系统预测的优化方法。这个算法结合了粒子群优化(PSO)与支持向量机(SVM),能有效提高电力负荷的预测精度。通过 PSO 对 SVM 的参数进行优化,能够提升模型的准确性,尤其是在复杂的电力负荷预测时。这种方法不仅能够在实际应用中更精准的负荷预测,还能减少计算量,适应性蛮强的哦。此外,MATLAB 实现的源码还挺友好,能够你快速上手。你可以通过调整权重来优化模型,达到最佳效果。如果你正在做电力系统预测的工作,不妨试试这个算法,应该能带来不错的效果哦。如果你对电力负荷预测感兴趣,还可以参考一下其他相关资源,比如基于Elm 神经
SQLite
0
2025-06-17
灰色预测的Matlab程序
人口预测中,使用灰色预测算法的Matlab程序实现,帮助分析未来趋势和模式。灰色预测算法在数据不完备或者数据质量较差时表现出色。
Matlab
15
2024-07-27
灰色预测的Matlab求解技术
针对灰色预测的有效算法,使用Matlab对其全过程进行了详尽求解,确保方法的全面可靠性。
Matlab
17
2024-08-27
初探SVM预测算法及其Matlab源码
介绍了初探数据处理中的预测算法——支持向量机(SVM),并提供了相应的Matlab源码。支持向量机作为一种强大的预测工具,在数据分析中展现出了其独特的应用价值。
Matlab
9
2024-09-26
灰色预测方法的Matlab代码
灰色预测方法的Matlab代码,用于预测未来趋势的数据,下载后替换成自己的数据即可使用。
Matlab
17
2024-08-27