利用成本计算的最小二乘法进行迭代优化theta值,通过梯度下降拟合数据集,绘制出线性曲线图。
机器学习中的线性回归预测住房价格预测与MATLAB开发
相关推荐
机器学习房价预测数据集
房价预测任务是机器学习中经典且实际应用意义强的任务,通过历史房价数据,结合各类相关特征来构建预测模型。这个数据集适合做特征工程、数据清洗的练习。房价预测对于房地产从业者、投资者甚至政府来说,判断市场趋势,做出更好的决策。挑战在于如何缺失值、异常值,并根据不同市场情况选择合适的特征与模型。如果你想深入理解房价预测,并做出更准确的模型,这个数据集肯定能给你不少实践机会哦。对于数据科学家来说,通过这种数据集的学习,可以大大提升自己的模型调优能力。
数据挖掘
0
2025-06-14
机器学习中的线性回归算法总结PPT
线性回归是机器学习中最基础也是最常见的算法之一,用于分析房屋销售数据等各种应用场景。
算法与数据结构
26
2024-07-17
Matlab中的pinv代码机器学习线性回归梯度下降
在Andrew NG的《机器学习》课程中,介绍了Matlab中针对单变量和多变量线性回归的矢量化实现,包括使用梯度下降和正则方程方法。回归问题是在预测项目销售量等需求中的应用,通过成本函数J(theta)优化参数theta以使假设函数h(x)尽可能接近实际输出y。梯度下降算法和Normal方程分别提供了基于数据拟合的优化路径。
Matlab
14
2024-10-01
基于机器学习和时间序列分析的房价预测模型在投资决策中的应用
本项目利用机器学习和时间序列分析构建房价预测模型,帮助投资者和购房者理解未来房价走势。通过历史房价数据分析,预测模型将提供准确的市场展望。数据准备阶段包括收集房价、房屋面积、卧室数量、距离最近公交站距离等特征。数据源可以是公开数据集或通过房地产网站爬虫获取。数据预处理步骤涵盖缺失值处理、异常值检测和数据标准化,以提高模型精度和鲁棒性。特征工程阶段选择房屋面积、卧室数量和距离最近公交站距离等关键特征,以支持模型构建。
统计分析
15
2024-07-17
城市房价模型的分析与预测
分析影响城市房价的主要因素,并建立数学模型以预测未来的房价走势。通过网络资源的查找和数据分析,我们确定了建安成本、市场供求变化、土地成本、税费以及居民人均收入等因素对房价影响的主导作用。我们采用蛛网模型的思想来建立房价模型,该模型能有效地描述长周期内供给与需求的互动关系。此外,我们根据历年房价数据进行了深入分析,并提出了预测未来房价走势的方法和建议。
数据挖掘
14
2024-10-20
使用机器学习预测伪随机数生成器的逻辑回归Matlab实现
要运行一个学习者的单个实例,请使用exampleKNN.m脚本。要重新运行实验,请运行deployConfig.m。我们总共实施了五名学习者:随机抽样-按比例随机抽取训练集中标签的比例随机森林-传统的随机森林算法,以固定深度生长自举树-预测由树预测的标签的模式KNN(k最近邻)-从训练集中预测k最近邻标签的模式朴素贝叶斯-假设给定标签的每个特征在条件上均独立于所有其他特征-通过在训练集中计数来学习概率,并根据未归一化的贝叶斯规则预测具有最高概率的标签Logistic回归-传统的logistic回归分类器使用Barzilai Borwein方程对更新进行了梯度下降训练-预测每个输出最可能的标签我
Matlab
8
2024-08-25
多元线性回归预测方法在数学建模中的应用
你在做数学建模的时候,回归经常是问题的好帮手,尤其是多元线性回归。这种方法可以你通过已有的数据来预测和趋势。举个例子,如果你有多个变量影响某个结果(比如气温、湿度和风速等因素对空气质量的影响),多元线性回归就能通过数学模型告诉你如何量化这些关系。这里有一些挺实用的资源,能帮你快速上手多元线性回归。比如,SPSS 的多元线性回归教学讲义,或者Matlab里的多元回归示例,这些都挺适合刚入门的同学。了,如果你熟悉编程,像Java的实现示例也不错,可以直接看这些代码例子,你更好地理解如何在实际项目中应用这种方法。嗯,适合各种不同需求的开发者!
算法与数据结构
0
2025-06-17
MATLAB非线性回归人口预测
非线性回归的 MATLAB 代码,预测人口数量挺方便的工具。如果你也搞过人口预测这类项目,应该知道手动拟合曲线有多麻烦。这套代码直接搞定从数据导入到结果可视化的全流程,甚至还留了用户交互的口子,自己输数据就能出预测结果,效率高不少。
非线性函数拟合一直是建模里的硬骨头,尤其是遇到增长趋势不太规律的数据。这份代码用的是 MATLAB 的fitnlm函数,适合做指数、sigmoid甚至多项式的非线性回归,跑起来响应也快,脚本逻辑也清晰。
数据部分可以直接导入表格,结构标准就能跑,比较适合人口、经济类的时间序列建模场景。你也可以在脚本里替换成自己的数据,模型参数一调就能跑预测,图也会自动出来。
如果
算法与数据结构
0
2025-06-17
线性回归与决策树在预测建模中的对比研究
数据挖掘中,预测建模是一种分析多个自变量或预测变量与一个响应或因变量之间数学相关性的技术。在机器学习中,决策树用于分类和回归目的,分类树称为CART模型,而回归树用于预测。聚焦于比较线性回归和回归树的概念及其在UCI数据集上的应用。研究发现,决策树相比线性回归在预测建模中表现更优,特别是在最小均方误差的选择上。
数据挖掘
13
2024-07-18