在Andrew NG的《机器学习》课程中,介绍了Matlab中针对单变量和多变量线性回归的矢量化实现,包括使用梯度下降和正则方程方法。回归问题是在预测项目销售量等需求中的应用,通过成本函数J(theta)优化参数theta以使假设函数h(x)尽可能接近实际输出y。梯度下降算法和Normal方程分别提供了基于数据拟合的优化路径。
Matlab中的pinv代码机器学习线性回归梯度下降
相关推荐
机器学习中的线性回归算法总结PPT
线性回归是机器学习中最基础也是最常见的算法之一,用于分析房屋销售数据等各种应用场景。
算法与数据结构
26
2024-07-17
机器学习与梯度下降算法 C++ 实现
运用 C++ 实现梯度下降算法,为机器学习项目提供解决方案。
数据挖掘
16
2024-04-30
使用sklearn进行线性回归与梯度下降算法实践分享
线性回归是预测连续型目标变量的方法,通过拟合最佳线性关系来进行预测。在Python中,使用sklearn库非常便捷。数据准备是线性回归的基础步骤之一。在这个示例中,我们创建了简单的二维数据集,并进行了模型训练和预测。模型训练后,评估模型的性能可以使用score()方法来衡量模型的决定系数(R^2),它衡量了模型预测值与实际值之间的吻合程度。
算法与数据结构
17
2024-08-03
Matlab中的pinv函数应用于多变量线性回归
在这个项目中,我们将使用Matlab的pinv函数实现具有多个变量的线性回归,以预测房屋价格。任务描述如下:假设您正在出售房屋,并且希望确定一个合理的市场价格。为了达到这个目的,我们首先收集了有关最近房屋出售情况的数据,并且对房屋价格进行了建模。数据集ex1data2.txt包含了俄勒冈州波特兰市的房屋价格训练集,其中第一列是房屋大小(平方英尺),第二列是卧室数量,第三列是房屋价格。我们将使用梯度下降和Matlab的pinv函数两种方法来解决这个问题。特征归一化是实现过程中的一部分。数据加载后,我们将显示数据集中的前10个样本值。
Matlab
8
2024-08-23
逐步回归法MATLAB代码优秀的机器学习资源
这是一个精选的优秀机器学习框架、库和软件列表,涵盖多种语言。受到awesome-php的启发,如果您有兴趣为列表做出贡献,请通过拉取请求或联系我们。如发现不推荐使用的存储库,请告知。所有者已声明此库未维护超过2到3年。另外,有关免费机器学习书籍的下载列表,请访问以下目录:SAS、通用机器学习、数据分析/数据可视化、高性能机器学习(MPP)、自然语言处理、演示和脚本。现代计算机视觉库VLFeat基于C/C++/MATLAB,支持语音识别。隐马尔可夫模型工具包HTK是用于构建和处理HMM的便携工具。OpenCV提供C++、C、Python、Java和MATLAB接口,支持多平台。DLib提供现代C
Matlab
12
2024-09-20
Coursera机器学习Matlab代码与主成分回归示例
这些文件源自Andrew Ng的Coursera机器学习课程,最初于2014年6月开设。课程已转为按需版本,学习者可在Coursera平台上找到。每周重点探讨不同的机器学习算法,包括线性回归、逻辑回归、多类别分类和预训练神经网络、神经网络、正则化线性回归、过拟合、支持向量机、K均值聚类和主成分分析、异常检测与系统重建。完成家庭作业需要进入相应子目录并运行对应的exn.m文件(n为1-8),例如第三周对应ex3.m。
Matlab
15
2024-09-26
利用梯度下降法进行回归分析
梯度下降法是一种优化算法,用于寻找系统模型中系数的最佳值。通过迭代过程,算法调整系数,最小化目标函数,通常是平方误差函数。展示了使用梯度下降法对随机生成的数据进行建模的具体实现。此外,我们探索了不同学习率技术对模型拟合效果的影响。
Matlab
12
2024-05-31
逐步回归法Matlab代码优秀的机器学习资源
初步回归法Matlab代码是一份精选的优秀机器学习框架、库和软件的列表,灵感源自于awesome-php。如果您希望为这个列表做贡献,请通过发送拉取请求或联系我们。此外,不建议使用那些长期未维护或所有者明确声明未维护的存储库。另外,您可以访问免费机器学习书籍列表、免费的在线机器学习课程列表、数据科学和机器学习博客列表,以及免费参与的本地聚会和活动列表。
Matlab
14
2024-07-25
机器学习中的线性回归预测住房价格预测与MATLAB开发
利用成本计算的最小二乘法进行迭代优化theta值,通过梯度下降拟合数据集,绘制出线性曲线图。
Matlab
18
2024-10-02