这些文件源自Andrew Ng的Coursera机器学习课程,最初于2014年6月开设。课程已转为按需版本,学习者可在Coursera平台上找到。每周重点探讨不同的机器学习算法,包括线性回归、逻辑回归、多类别分类和预训练神经网络、神经网络、正则化线性回归、过拟合、支持向量机、K均值聚类和主成分分析、异常检测与系统重建。完成家庭作业需要进入相应子目录并运行对应的exn.m文件(n为1-8),例如第三周对应ex3.m。
Coursera机器学习Matlab代码与主成分回归示例
相关推荐
Coursera机器学习课程MATLAB主成分回归代码及Python实现示例
这篇文章包含了Andrew Ng教授在Coursera机器学习课程中关于主成分回归的MATLAB代码实现,以及相应的Python示例。课程原本是在MATLAB环境下完成的,现在转换到了Python,并且每个Jupyter笔记件中都有详细的功能定义。
Matlab
12
2024-07-29
Coursera机器学习主成分回归MATLAB及Python实例
本存储库包含Andrew Ng课程中若干练习的Python实现。课程要求学习者使用Octave/MATLAB实现算法如线性回归和逻辑回归,而其他作业则基于课程提供的代码。我将大部分代码改为了现有的Python实现,如Scikit-learn。目前包括线性回归、逻辑回归、多类分类与神经网络、神经网络学习、正则化线性回归与偏差方差、支持向量机、K均值聚类和主成分分析、异常检测与推荐系统等。
Matlab
11
2024-08-22
Python机器学习:主成分分析
《Python机器学习》中第五章深入探讨了主成分分析 (PCA) 的概念和应用。PCA是一种用于提取主要特性的降维技术,在机器学习中广泛应用于数据可视化、特征选择和降噪等任务。
算法与数据结构
13
2024-05-13
Coursera机器学习课程Matlab代码及曲线
此资源涵盖了斯坦福大学Andrew Ng在Coursera平台上教授的机器学习课程,需要约60小时的学习时间投入。课程通过实践教学介绍了机器学习的基础知识,包括线性回归、逻辑回归、神经网络和支持向量机等常见的有监督学习算法。此外,还涵盖了偏差和方差、L2正则化、误差指标以及学习/验证曲线等概念。课程还包括无监督学习算法如k均值聚类和降维技术。最后,课程介绍了推荐系统和大规模机器学习的相关内容。
Matlab
19
2024-08-18
基于Matlab的机器学习主成分分析实现代码
基于PCA基本原理编写了主成分分析算法代码,不使用封装函数,且符合吴恩达机器学习课程要求。
算法与数据结构
10
2024-08-12
Coursera机器学习课程Python代码存在运行问题
这些Python代码来自Coursera的机器学习课程mlclass,由Andrew Ng教授提供。这些代码主要用于取代Matlab/Octave练习,因为一些Octave功能在计算机上无法实现,如绘图。代码涵盖了大多数练习,使用了Numpy、Scipy、Matplotlib、NLTK和Sci-Kit Learn等库。需要注意的是,Python与Octave/Matlab在某些算法的实现上可能有所不同,导致结果略有差异。
Matlab
15
2024-09-26
逐步回归法MATLAB代码优秀的机器学习资源
这是一个精选的优秀机器学习框架、库和软件列表,涵盖多种语言。受到awesome-php的启发,如果您有兴趣为列表做出贡献,请通过拉取请求或联系我们。如发现不推荐使用的存储库,请告知。所有者已声明此库未维护超过2到3年。另外,有关免费机器学习书籍的下载列表,请访问以下目录:SAS、通用机器学习、数据分析/数据可视化、高性能机器学习(MPP)、自然语言处理、演示和脚本。现代计算机视觉库VLFeat基于C/C++/MATLAB,支持语音识别。隐马尔可夫模型工具包HTK是用于构建和处理HMM的便携工具。OpenCV提供C++、C、Python、Java和MATLAB接口,支持多平台。DLib提供现代C
Matlab
12
2024-09-20
Matlab中的pinv代码机器学习线性回归梯度下降
在Andrew NG的《机器学习》课程中,介绍了Matlab中针对单变量和多变量线性回归的矢量化实现,包括使用梯度下降和正则方程方法。回归问题是在预测项目销售量等需求中的应用,通过成本函数J(theta)优化参数theta以使假设函数h(x)尽可能接近实际输出y。梯度下降算法和Normal方程分别提供了基于数据拟合的优化路径。
Matlab
14
2024-10-01
逐步回归法MATLAB代码 - 机器学习资源库
这是一个出色的初步回归法MATLAB代码的机器学习资源列表,收录了各种优秀的机器学习框架、库和软件(按语言分类)。本资源受到awesome-php项目的启发。如果您有意为此列表贡献内容,请通过发送拉取请求或与我联系方式参与。我们建议您在以下情况下不使用列出的库:其所有者已明确声明不再维护此存储库;长时间未更新(2至3年)。此外,我们还提供免费机器学习书籍的下载列表,访问可用的(主要是免费的)在线机器学习课程列表,以及数据科学和机器学习博客和新闻通讯列表,还包括免费参加的聚会和本地活动。如果您需要进一步了解,请查看我们的目录框架和库,并编写一个脚本来将它们爬取。
Matlab
18
2024-07-22