这篇文章是一份关于学习数据挖掘的实用指南,适合希望深入了解数据挖掘技术的读者。
数据挖掘技术实用指南
相关推荐
数据挖掘技术的实用指南
这篇文章详细介绍了数据挖掘的多个实际案例,帮助读者迅速掌握数据挖掘方法。
Oracle
9
2024-08-19
WEKA数据挖掘工具实用指南
WEKA数据挖掘工具实用指南
数据预处理
Explorer – Preprocess: 数据清洗、转换等操作
Explorer – Select attributes: 属性选择,也可在Preprocess页面完成
数据可视化
Explorer – Visualize: 生成二维散布图
分类预测
Explorer – Classify: 应用分类算法
Experimenter: 比较不同分类算法的性能
其他功能
KnowledgeFlow: 支持批量和增量学习模式
Explorer – Associate: 进行关联分析
Explorer – Cluster: 进行聚类分析
数据挖掘
10
2024-05-25
数据挖掘:实用机器学习工具和技术
数据挖掘中常用的工具和技术
数据挖掘
18
2024-05-25
数据挖掘算法实用推荐
数据挖掘的算法资源推荐真得挺实用的,里面把常见的算法都拎出来讲了,还配了不少实际例子。像是决策树和随机森林这些经典老将,适合新手入门也方便老手复盘思路。还有聚类、回归、异常检测这些常用套路,说得都蛮清楚。
分类算法里头,ID3、C4.5这种树结构的比较好理解,逻辑直观;像支持向量机这种,虽然概念偏硬核,但文里用的语言还挺接地气,读起来不费劲。配合泰坦尼克号预测案例,嗯,效果立马有感觉。
K 均值和DBSCAN属于比较典型的聚类算法,一个适合干净的数,一个适合脏乱差的。还有像t-SNE这种降维算法,配合可视化用起来贼带劲。你平时要是做可视化展示,那这类方法挺香的。
推荐你顺手看下后面列的资源,像
数据挖掘
0
2025-06-15
数据挖掘技术核心算法与实用技巧
数据挖掘的实用技巧合集,整理得还挺系统的。页面不复杂,内容也比较集中,适合你快速上手了解一些核心算法。尤其是像分类、聚类这些,讲得通俗,例子也接地气。要是你刚接触数据挖掘,挺值得一看。
数据挖掘技术的方式不走高冷路线,属于那种能看懂、能上手的风格。没啥废话,直接上干货。像Apriori算法、K-means聚类这些经典的内容,都有提到,而且写得还蛮清晰的。
页面结构也比较直给,没有太多干扰信息。你进去就是一页 PDF 风格的讲义内容,下载地址也直接放在显眼位置,响应也快,不用跳来跳去。
如果你平时用 Python 或者 R 搞,这些技术你迟早会碰到,不如先在这个资源里过一遍思路。哪怕你不搞建模,
Hadoop
0
2025-06-15
数据挖掘技术
基于实例学习[1]是一种重要的学习范式。k-最近邻(简称k-NN)[2]是一种代表性的基于实例的分类器,它将未标记的实例分配给其k个最近邻中最常见的类。由于其简单和有效性,k-NN分类器已被广泛应用于模式分类领域。大多数基于实例的分类器使用给定的度量来衡量未标记实例与其邻居之间的相似性。当属性为数值时,归一化欧氏距离是衡量实例相似性的自然度量标准。然而,对于许多应用程序来说,可能不存在一些自然的度量概念。在这种情况下,许多设计用于处理数值属性的基于实例的分类器将面临困难,并且通常使用更简单的度量来衡量分类属性值之间的距离。尽管这些简单的度量在某些情况下表现良好,但在其他情况下可能表现不佳。
数据挖掘
18
2024-07-18
数据挖掘综述全面探索数据挖掘技术
数据挖掘综述:数据挖掘技术的广泛应用涵盖了从商业到科学研究的各个领域。随着数据量的增加和计算能力的提升,数据挖掘在发现模式和提供洞察方面发挥着关键作用。
Oracle
16
2024-07-27
数据挖掘概念技术
韩家炜《数据挖掘概念与技术》第三版中文,涵盖数据挖掘概念与技术讲解,入门必备。
数据挖掘
15
2024-04-30
数据挖掘技术综述
当前,数据挖掘领域涵盖了多种常用方法,主要包括数学统计方法和机器学习算法,如人工神经网络和遗传算法。其中包括关联规则挖掘、序列模式分析、分类分析、聚类分析以及异常点检测。
数据挖掘
13
2024-07-13