Practical Real-Time Data Processing and Analytics
实时数据流的实战书,推荐你看《Practical Real-Time Data Processing and Analytics》这本资源。里面讲得蛮清楚,从 Apache Storm 的 Spouts、Bolts 到 Spark Streaming 的小批模式,再到 Flink 的 事件时间、状态管理这些点,都挺有价值的。
Storm 的消息流设计比较轻量,适合那种对延迟要求高的应用,比如风控系统。你要是用 Kafka 接数据,想快速出个报警结果,用 Storm 合适。
Spark Streaming就偏稳重一些。它走的是“微批”路线,适合跟 Spark 的整个生态打配合,比如你要用 Spa
spark
0
2025-06-14
Real-Time UML 3rd Edition Advances in UML for Real-Time Systems
这本《Real Time UML, Third Edition》挺适合那些做嵌入式系统和实时系统开发的朋友。它把 UML 2.0 的应用讲得实用,适合像你这样的工程师。书里讲的内容不复杂,文字通俗易懂,从需求到对象结构的定义,都有实际的例子。对实时系统的架构、机制设计,甚至性能优化都有涉及,最关键的是它引入了 UML 2.0 标准,能大大提升架构设计的清晰度和可扩展性。对有时间系统建模需求的朋友来说,书里的 UML Profile for Schedulability、Performance 和 Time 等内容,绝对值得参考。使用这些方法能让你的系统设计更标准化,方便后续和优化。
Access
0
2025-08-15
Building Scalable Real-Time Data Systems Principles and Best Practices
大数据系统构建
在可扩展实时数据系统的构建中,理解其原理和最佳实践至关重要。1. 架构设计: 采用微服务架构,以支持横向扩展。2. 数据流处理: 利用流处理框架,如Apache Kafka或Apache Flink,确保数据的实时性。3. 存储方案: 选择适合的存储技术,如NoSQL数据库,以满足高并发和大数据量的需求。4. 监控与优化: 定期进行系统性能的监控,并对数据处理过程进行优化,确保系统的稳定性与高效性。
算法与数据结构
8
2024-11-02
Accelerating Real-Time Analytics with Spark and FPGAaaS
使用 Spark Streaming 进行实时分析
在当今数据驱动的世界里,实时数据分析变得至关重要。P.K. Gupta 和 Megh Computing 在 #HWCSAIS17 中提出了一种利用 Spark Streaming 结合 FPGA as a Service (FPGAaaS) 的技术来加速实时分析的方法。
Spark Streaming 用于实时分析
Spark Streaming 是 Apache Spark 的一个重要模块,它提供了对实时流数据处理的支持。通过微批处理的方式,Spark Streaming 能够高效地处理大量的流数据,并且能够与 Spark 的核心功能(如
spark
12
2024-11-01
Linux Soft Real-Time Target v2.4Custom Linux Target for Real-Time Workshop in MATLAB Development
The Linux Soft Real-Time Target is defined by MathWorks for Real-Time Workshop. The target uses the POSIX real-time clock to generate periodic signals, waking up the model process at each time step. The process runs with the highest priority as defined by the scheduler, requiring root privileges to
Matlab
12
2024-11-06
Real-Time Compressive Tracking的MATLAB代码下载
这是张磊的Real-Time Compressive Tracking论文代码的MATLAB实现,经过调试验证。
Matlab
14
2024-07-24
Oracle 9i&10g Programming Mastery Deep Dive into Database Architecture
Oracle基础电子书,学习的好材料,适应于Oracle开发人员。书中详细介绍了数据库体系结构,帮助读者深入理解Oracle的工作原理和最佳实践。
Oracle
12
2024-11-04
In-Depth Guide to Apache Flink for Data Stream and Batch Processing
《Learning_Apache_Flink_ColorImages.pdf》 dives deep into the powerful Apache Flink framework for streaming and batch processing. Here is an in-depth look at the core concepts and functions of each chapter:
Chapter 1: Introduction to Apache Flink
Apache Flink is an open-source distributed stream proce
flink
13
2024-11-07
Real-Time Parallel Hashing on the GPU并行哈希构建方案
GPU 加速的大型哈希表构建真的是一把好手。《Real-Time Parallel Hashing on the GPU》这篇文章讲得挺实在,主要是用 CUDA 来玩并行哈希,性能提升猛。你如果平时大数据集合、图形识别那种应用,读一读准没错。
CUDA 的并行能力在这篇文章里被用得挺巧。它不是简单堆线程,而是用两种哈希策略——稀疏完美哈希和布谷鸟哈希,还混搭了一种新方法来权衡构建速度、内存占用和查询效率。
最有意思的是,哈希表还能实时构建,能扛下百万级别的数据,不拖慢应用。比如用在 3D 表面交集计算或图像匹配那种场景,响应也快,数据也稳,适合做实时图形。
文中还提了几个细节,比如布谷鸟哈希用
算法与数据结构
0
2025-07-05