知识流环境:网络数据挖掘实验 PPT
知识流环境
相关推荐
Weka知识流界面操作指南
挖掘支持度在10%-100%之间且置信度高于0.8
分类关联规则
数据集为“weather.nominal.arff”
“car”设为True
“metricType”设为confidence
“minMetric”设为0.8
“numRules”设为100
数据挖掘
14
2024-05-26
PostgreSQL 流复制热备环境搭建与常见问题解决
PostgreSQL 数据库支持类似 Oracle Standby 数据库的热备功能,通过日志传送实现。日志传送方式分为两种:基于文件的传送和流复制。
PostgreSQL
21
2024-05-20
spark流处理
Spark Streaming是Spark核心API的扩展之一,专门用于处理实时流数据,具备高吞吐量和容错能力。它支持从多种数据源获取数据,是流式计算中的重要工具。
spark
18
2024-07-13
Apache Flink 流处理
Apache Flink 是一个开源框架,使您能够在数据到达时处理流数据,例如用户交互、传感器数据和机器日志。 通过本实用指南,您将学习如何使用 Apache Flink 的流处理 API 来实现、持续运行和维护实际应用程序。
Flink 的创建者之一 Fabian Hueske 和 Flink 图处理 API (Gelly) 的核心贡献者 Vasia Kalavri 解释了并行流处理的基本概念,并向您展示了流分析与传统批处理的区别。
flink
12
2024-05-12
Storm实时流处理流程
Storm的工作流程可以概括为以下四个步骤:
用户将Topology提交到Storm集群。
Nimbus负责将任务分配给Supervisor,并将分配信息写入Zookeeper。
Supervisor从Zookeeper获取分配的任务,并启动Worker进程来处理任务。
Worker进程负责执行具体的任务。
Storm
11
2024-05-12
流计算原理与应用
流计算原理与应用
引言
传统的批处理系统难以满足实时性要求日益增长的应用场景,流计算应运而生。本章将深入探讨流计算的基本概念、核心原理以及典型应用。
基本概念
流数据: 区别于静态存储的数据集,流数据具有持续到达、无限增长等特点。
流计算: 对持续到达的数据流进行实时处理和分析,并及时输出结果。
核心原理
数据流模型: 探讨不同的数据流模型,如时间窗口、事件驱动等。
流处理引擎: 介绍常见的流处理引擎,如 Apache Flink、 Apache Storm 等,比较其架构和特点。
状态管理: 阐述流计算中的状态管理机制,包括状态存储、状态一致性等。
容错机制: 分析流计算的
Storm
18
2024-06-30
Matlab 雨流计数法
利用 Matlab 实施雨流计数法,轻松处理载荷数据。
Matlab
16
2024-05-26
处理Kafka数据流
使用Spark Streaming处理Kafka数据流时,需要将 spark-streaming-kafka-assembly_2.11-1.6.3.jar 添加到PySpark环境的 jars 目录中。该jar包提供了Spark Streaming与Kafka集成所需的类和方法,例如创建Kafka DStream、配置消费者参数等。
spark
11
2024-04-29
Oozie 工作流引擎
Oozie 是 Cloudera 公司为 Apache 开源的工作流引擎框架,用于在 Hadoop 平台上管理和调度作业。
Hadoop
12
2024-05-13