本研究探讨了遗传神经网络在数据挖掘中的应用,重点分析其在处理复杂数据时的优势与效果。通过实验验证,提出了改进的算法,提高了挖掘效率。
研究遗传神经网络的数据挖掘方法
相关推荐
matlab实现遗传神经网络算法
这是一份详细说明如何利用matlab实现遗传神经网络算法的文件,适合于理解遗传算法和神经网络模型的学习和参考。
Matlab
13
2024-07-20
数据挖掘中的神经网络算法研究
随着数据库技术的成熟和数据应用的普及,大规模数据库和数据仓库的建立,人们开始面对“数据丰富,但信息贫乏”的挑战。数据挖掘技术从海量数据中挖掘出隐含的、先前未知的、对决策有潜在价值的知识和规则,这些规则揭示了数据库中一组对象之间的特定关系,为经营决策、金融预测等提供依据。专注于神经网络算法在数据挖掘中的应用问题,这种算法具有高准确率和强大的抗噪声能力。SQL Server 2005提供了一种简单的方式来应用神经网络算法,适用于SQL Management Studio、BI Dev Studio等环境,用于创建神经网络挖掘模型。
数据挖掘
16
2024-07-16
手写数字神经网络数据挖掘研究
手写数字的数据挖掘的完整项目,真的蛮香的!压缩包里有详细的文档,几十页,看起来不累,逻辑还清晰。更好的是,代码都写好了,分成两块:数据提取和数据挖掘,用的是 VC,虽然老点,但跑起来没问题。原始数据也一起打包了,调试后能直接生成完整的软件,拿来练手或者当毕设材料都挺合适的。
数据挖掘
0
2025-06-13
神经网络:数据挖掘算法简介
神经网络是一种受人类大脑启发的算法,由相互连接的输入/输出单元组成。每个连接都关联着一个权重,通过调整这些权重,神经网络可以在学习阶段学习预测输入样本的正确类别。在此过程中,神经网络利用激励函数和权重调整来学习。
数据挖掘
16
2024-05-25
银行业案例研究神经网络在数据挖掘中的应用
数据挖掘作为商业智能方法之一,通过揭示银行业运营中的隐藏信息,帮助制定清晰的战略业务决策。神经网络技术在Alyuda软件包中的运用,为银行业提供了运筹学方法的案例研究。
数据挖掘
11
2024-07-16
神经网络在数据挖掘中的新应用方式
基于神经网络方法的数据挖掘过程涉及三个主要阶段:数据的选择与预处理,网络模型的选择与训练,以及规则的提取与评估。
数据挖掘
7
2024-09-19
BP神经网络数据挖掘技术的实现与应用
BP神经网络通过迭代处理一组训练样本,将各样本的网络预测与实际已知类标号进行比较实现学习训练,反向修改网络的权值,使得网络预测与实际类之间的误差平方最小。BP神经网络按照最优训练准则反复迭代,确定并不断调整神经网络结构。通过迭代修改,当误差收敛时学习过程终止。因此,BP神经网络具有分类准确、收敛性好、动态性好和鲁棒性强等优点。
Hadoop
7
2024-11-05
优化神经网络的遗传算法程序
神经网络的遗传算法优化程序正在不断改进和优化,以提高其效率和性能。
Matlab
10
2024-07-28
主成分分析优化遗传神经网络在电力系统短期负荷预测中的应用
针对传统BP神经网络训练速度慢、易陷入局部极小值等问题,该研究提出了一种基于主成分分析 (PCA) 和遗传算法 (GA) 的优化遗传神经网络模型。通过PCA提取负荷数据的主要特征,降低模型输入维度,并利用GA优化BP神经网络的结构参数,克服其局部收敛问题。实验结果表明,该方法有效提高了电力系统短期负荷预测的精度。
统计分析
18
2024-05-19