根据观测、调查收集到初步的样本数据集后,接下来要考虑的问题是:样本数据集的数量和质量是否满足模型构建的要求?有没有出现从未设想过的数据状态?其中有没有什么明显的规律和趋势?各因素之间有什么样的关联性?通过检验数据集的数据质量、绘制图表、计算某些特征量等手段,对样本数据集的结构和规律进行分析的过程就是数据探索。数据探索有助于选择合适的数据预处理和建模方法,甚至可以完成一些通常由数据挖掘解决的问题。本章从数据质量分析和数据特征分析两个角度对数据进行探索。
数据探索分析样本数据集的质量与特征
相关推荐
车险保单样本数据集
包含地区、车型、车主星座、赔款、保费等字段的车险历史保单数据,用于建模算法示例。
数据挖掘
14
2024-05-14
使用Spark进行简单文本数据集处理
Apache Spark是一个为大数据处理设计的强大分布式计算框架,其高效的并行和分布式数据处理能力可以处理PB级别的数据。Spark的核心优势在于其内存计算机制,大大减少了磁盘I/O,提高了计算速度。在处理一个简单的文本数据集的主题下,我们将探讨如何使用Spark处理文本数据。了解Spark的基本架构,包括Driver程序、Cluster Manager和Worker Nodes的角色。SparkSession作为Spark 2.x引入的新特性,整合了SQL、DataFrame和Dataset API,可以用于加载、转换和操作文件。例如,可以使用SparkSession.read.text(
统计分析
17
2024-07-23
数据挖掘测试数据集iris、libras、多特征数据集
数据挖掘是从海量数据中提取有价值知识的过程,结合统计学、计算机科学和人工智能等多个领域技术。测试数据集在验证和评估模型性能中起关键作用。以下是几个经典数据集的详细介绍:1. Iris数据集:由Ronald Fisher在1936年收集,包含150个样本,每个样本属于三种鸢尾花中的一种,有4个特征。2. Libras数据集:针对手语识别,包含39种动作,由34个人执行,记录了每个动作的39个关节位置信息。3. 多特征数据集:通常用于回归、分类等任务,具有多种属性和特征,来自不同领域如金融、医疗等。这些数据集广泛用于学术研究和教育,帮助理解和掌握数据挖掘的核心概念和技术。
数据挖掘
13
2024-07-16
MySQL 员工样本数据库
MySQL示例数据库Employees的使用方法:解压后,在employees.sql文件中的drop table和create table之间添加set default_storage_engine = InnoDB;然后在该目录下使用命令行mysql -t -u root -p < employees>
MySQL
12
2024-07-30
列值分区样本数据
列值分区样本数据用于对大数据集进行优化,以提高查询性能。
PostgreSQL
19
2024-05-12
中文情感分析:多算法与多数据集探索
大数据与算法:应用场景解析
电子商务领域:
分析用户行为数据,预测未来需求,提升订单转化率。
构建用户画像,实现精准营销和个性化推荐。
医疗保健领域:
辅助诊断:基于症状和检查结果,利用算法模型辅助医生诊断病情。
治疗方案推荐:根据患者数据,提供个性化的治疗方案建议。
金融风险管理领域:
风险识别:分析交易数据,识别潜在的金融风险和欺诈行为。
预测模型:构建模型预测市场变化,辅助制定风险管理策略。
物流与供应链管理领域:
路线优化:利用实时数据优化物流运输路线,提高效率并降低成本。
库存管理:分析市场需求和供应链数据,优化库存管理策略。
智能城市与交通管理领域:
数据监测:实
算法与数据结构
14
2024-05-27
博客数据集分析
基于 Python 数据挖掘的聚类实验,使用 Kiwitobes 的博客数据集,分析了单词在不同博客中的出现频率,并利用 K-means 算法对其进行了聚类。
算法与数据结构
17
2024-04-30
SQL练习数据集广告特征表
这是一个专为SQL练习设计的数据集,包含广告基本信息和特征数据。
MySQL
12
2024-09-24
匹配样本数据在 SPSS 中的统计分析基础
匹配样本方法中,两种生产方法在类似条件下进行检验,抽样误差往往比独立样本方法小,因为去除了工人个体差异带来的误差。差值的样本均值和标准差假设服从正态分布,检验统计量为t。工人方法1的完成时间、方法2的完成时间以及差值如下:1t2t3t4t56.0t5.0t7.0t6.2t6.06.6t5.2t6.5t5.9t6.00.6t-0.2t0.5t0.3t0.0
统计分析
15
2024-05-15