包含地区、车型、车主星座、赔款、保费等字段的车险历史保单数据,用于建模算法示例。
车险保单样本数据集
相关推荐
数据探索分析样本数据集的质量与特征
根据观测、调查收集到初步的样本数据集后,接下来要考虑的问题是:样本数据集的数量和质量是否满足模型构建的要求?有没有出现从未设想过的数据状态?其中有没有什么明显的规律和趋势?各因素之间有什么样的关联性?通过检验数据集的数据质量、绘制图表、计算某些特征量等手段,对样本数据集的结构和规律进行分析的过程就是数据探索。数据探索有助于选择合适的数据预处理和建模方法,甚至可以完成一些通常由数据挖掘解决的问题。本章从数据质量分析和数据特征分析两个角度对数据进行探索。
算法与数据结构
7
2024-11-04
便捷车险管理,高效省心
还在为车险管理烦恼吗?试试这款便捷的车险管理系统吧!功能丰富,操作简单,让您的车险管理更加高效省心。快来体验吧,与大家一起分享使用心得!
Access
20
2024-04-30
车牌及机动车图像数据集
嘿,给推荐一个挺有用的资源——车牌及机动车图片.rar压缩包,里面有一堆和汽车、车牌相关的图片。如果你最近做车牌识别或者车载系统开发,这个包简直是个宝藏。里面的图片可以用于图像、计算机视觉、深度学习训练,甚至光学字符识别(OCR)都有用处。如果你在搞图像分类、物体识别,或者做一些相关的 AI 项目,这些数据集就能为你大的。值得注意的是,图片压缩算法、数据隐私管理这些问题也得关注,尤其是车牌识别中,涉及到一些敏感信息。,想做交通工具识别、车牌识别或者相关图像的项目,这个资源蛮适合的。建议:整理好数据集,配合现代的深度学习技术,效果会更好。
算法与数据结构
0
2025-06-13
使用Spark进行简单文本数据集处理
Apache Spark是一个为大数据处理设计的强大分布式计算框架,其高效的并行和分布式数据处理能力可以处理PB级别的数据。Spark的核心优势在于其内存计算机制,大大减少了磁盘I/O,提高了计算速度。在处理一个简单的文本数据集的主题下,我们将探讨如何使用Spark处理文本数据。了解Spark的基本架构,包括Driver程序、Cluster Manager和Worker Nodes的角色。SparkSession作为Spark 2.x引入的新特性,整合了SQL、DataFrame和Dataset API,可以用于加载、转换和操作文件。例如,可以使用SparkSession.read.text(
统计分析
17
2024-07-23
MySQL 员工样本数据库
MySQL示例数据库Employees的使用方法:解压后,在employees.sql文件中的drop table和create table之间添加set default_storage_engine = InnoDB;然后在该目录下使用命令行mysql -t -u root -p < employees>
MySQL
12
2024-07-30
列值分区样本数据
列值分区样本数据用于对大数据集进行优化,以提高查询性能。
PostgreSQL
19
2024-05-12
SPSS匹配样本数据分析教程
匹配样本数据的,最适合用来对比类似条件下的两种方式,比如让同一个工人试用两种生产方法。嗯,这种方式的好处挺——误差小、干扰少,尤其适合小样本、精细。SPSS里操作也不复杂,用配对 t 检验就搞定,关键是你得先确认数据差值di差不多服从正态分布。如果你也经常做这种对比测试,这篇基础教程真的还挺实用。
统计分析
0
2025-06-18
2018年车联网数据集深度探索车辆行驶行为
《2018年车联网公开数据集:洞察车辆行驶的深度探索》
车联网技术作为现代交通信息化的重要组成部分,正逐步引领智能交通系统的发展。2018年车联网公开数据集,为研究者提供了宝贵的实证资源,用于深入理解车辆行驶模式、优化交通管理以及提升驾驶安全。
数据集概览
这个数据集包含了丰富的信息,如车牌号、车辆位置信息(经纬度坐标)、转向角、GPS速度以及数据采集时间,为车辆行驶问题的建模分析提供了强有力的支持。
车牌号:作为每辆汽车的独特标识,是追踪特定车辆行为的关键信息,通过分析,可以研究车辆的行驶规律。
经纬度坐标:记录车辆的精确位置,为研究车辆轨迹、道路拥堵状况提供基础。
转向角:揭示
算法与数据结构
7
2024-10-27
基于行程和速度特征的车险风险分析
基于行程和速度特征的车险风险分析
行程里程分析
将行程里程划分为 0-2 公里、2-5 公里、5-10 公里、10-50 公里、50-100 公里和 100 公里以上六个区间,分析每个区间行程数量占比与车险出险频率的关系。
0-2 公里区间: 区间行程数量占比越高,车险出险频率越低。
2 公里以上区间: 总体呈现出区间行程数量占比越高,车险出险频率越高的趋势,但存在一定波动性。
分析结果表明,2 公里可能是区分风险的一个临界值,但该值并非最优。由于后续建模不采用该因子,故不再进一步探讨更可靠的临界值。
虽然行程里程分析具有一定风险区分能力,但区分度和稳定性不如后续介绍的行程时长分析,
算法与数据结构
24
2024-05-25