Weka数据挖掘: 数据预处理实战
精简数据集
在数据挖掘中, 类似“ID”的属性通常不具备分析价值, 需要移除。 在Weka中, 我们可以通过选中 “id” 属性, 点击 “Remove” 按钮来实现。 操作完成后,将新的数据集保存为 “bank-data.arff” , 并重新打开。
数值属性离散化
一些数据挖掘算法, 例如关联分析, 只能处理标称型属性。 因此, 我们需要对数值型属性进行离散化处理。
本例中, “age”, “income” 和 “children” 三个变量属于数值型。 其中, “children” 只有四个取值: 0, 1, 2, 3。 我们可以直接修改ARFF文件, 将 @attri
数据挖掘
12
2024-05-16
Kettle 实战指南
Kettle 实战指南
本指南深入探讨 ETL 工具 Kettle 的应用与功能。涵盖以下主题:
Kettle 核心组件: 了解 Kettle 的转换和作业模块,掌握其架构和核心概念。
数据抽取: 学习使用 Kettle 从各种数据源(如关系型数据库、CSV 文件、Excel 文件等)中提取数据。
数据转换: 掌握 Kettle 提供的丰富数据转换功能,包括数据清洗、数据验证、数据排序、数据分组、数据合并等。
数据加载: 了解如何使用 Kettle 将转换后的数据加载到目标数据仓库,例如数据库、数据湖或云存储。
工作流编排: 学习使用 Kettle 的作业模块构建复杂的数据处理工作流,实现自
Oracle
12
2024-04-29
数据形态与预处理之道
数据形态探秘
本章节深入探讨数据及其类型,并解析数据汇总方法,为后续数据预处理奠定基础。
数据预处理的必要性
现实世界的数据往往存在噪声、不一致、缺失等问题,直接使用会影响分析结果的准确性。数据预处理能够有效解决这些问题,提升数据质量。
数据预处理核心技术
数据清理: 识别并处理数据中的错误、噪声、异常值等,例如缺失值填充、噪声数据平滑等。
数据集成: 将来自多个数据源的数据整合到一起,形成统一的数据视图,例如实体识别、冗余属性处理等。
数据变换: 对数据进行格式转换、规范化、离散化等操作,以便于后续分析和挖掘,例如数据标准化、数值离散化等。
数据归约: 在不损失重要信息的前提下,降低数
算法与数据结构
16
2024-05-25
SQL - 使用子查询优化复杂数据检索
SQL子查询作为一种强大的工具,通过将一个查询嵌套在另一个查询中,用于检索复杂且特定的数据。将复杂任务分解为更小、更易管理的步骤,有助于提高SQL代码的可读性和可维护性。例如,假设您的数据库包含'orders'和'order_items'表,您可以使用子查询查找特定产品在所有订单中的总销量。
SQLServer
15
2024-07-20
Weka数据准备与预处理PPT
数据预的第一步,往往是格式转换。bank-data.xls这个文件就是典型例子,Excel 格式得先变成 Weka 能读的.arff。操作也不复杂,用 Excel 另存成.csv,再扔进 Weka 保存一下就行了,挺顺的。
Weka 的 Explorer 界面还挺直观的,你只要点Open file,选中刚才导出的bank-data.csv,点save,选Arff data files格式,文件名随便起,比如bank-data.arff,保存就搞定。
这种方式适合刚入门的同学,是你还不太熟Python或者Pandas的话,用 Weka 图形界面更省事。而且小文件效果还不错,响应也快。
如果你后面
数据挖掘
0
2025-06-15
光谱数据预处理
该 MATLAB 源码包含光谱读入、降噪和去背景一体化功能,适用于多种光谱处理任务,例如拉曼光谱分析。
Matlab
23
2024-04-30
RapidMiner 2 数据导入导出与预处理
作为 RapidMiner 1 的进阶版本,RapidMiner 2 在数据处理方面展现出更强大的功能。将重点阐述 RapidMiner 2 在数据导入导出以及预处理方面的应用,帮助用户更高效地进行数据挖掘。
算法与数据结构
12
2024-06-04
ExtraDict数据预处理词典
在数据预处理过程中,词典文件“extraDict.txt”提供了关键的支持,用于丰富和定制数据处理的功能。这个词典可以帮助规范数据中的词汇,提升数据清洗和特征处理的准确性。
数据挖掘
12
2024-10-29
Spark医疗数据预处理
Spark 的数据预能力真的是蛮强的,是在医院这种结构复杂又数据量大的场景下,表现挺稳定。你可以把结构化的就诊记录、非结构化的检查报告,统统扔进去,跑个 RDD 转换或者用 DataFrame 清洗一下,效率还不错。
Spark 的分布式计算在多节点下跑预任务,几百万条数据压力也不大。比如用withColumn搞字段拆分,用filter剔除无效记录,用groupBy做一些分组统计,整个链路下来,代码量不多,可维护性也不错。
如果你对数据预这一块还想扩展一下思路,我给你找了几个还不错的资料:
基于 Spark 的交互式数据预:讲得比较细,适合深入了解。
光谱数据预:主要是非结构化数据的
spark
0
2025-06-15